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Abstract— With the growing popularity of digital twin and
autonomous driving in transportation, the demand for simu-
lation systems capable of generating high-fidelity and reliable
scenarios is increasing. Existing simulation systems suffer from
a lack of support for different types of scenarios, and the vehicle
models used in these systems are too simplistic. Thus, such
systems fail to represent driving styles and multi-vehicle interac-
tions, and struggle to handle corner cases in the dataset. In this
paper, we propose LimSim, the Long-term Interactive Multi-
scenario traffic Simulator, which aims to provide a long-term
continuous simulation capability under the urban road network.
LimSim can simulate fine-grained dynamic scenarios and focus
on the diverse interactions between multiple vehicles in the
traffic flow. This paper provides a detailed introduction to the
framework and features of the LimSim, and demonstrates its
performance through case studies and experiments. The source
code of LimSim is available on GitHub: github.com/PJLab-
ADG/LimSim.

I. INTRODUCTION

The urban traffic system is complex and diverse, en-
compassing numerous types of roads, such as intersections,
ramps, and roundabouts, as well as a wide variety of traffic
participants. Vehicles are the principal component of road
scenarios, and drivers with different driving styles exhibit
heterogeneous behavior while driving [1], [2]. By providing a
comprehensive view of how urban transport systems operate,
traffic simulators offer policymakers valuable insights into
the potential real-world impacts of their decisions [3]-[5].
Simulators also allow potential problems to be identified
and addressed before implementation in the physical environ-
ment, resulting in improved transportation while saving time
and resources. With the wide use of advanced technologies
like virtual reality and data mining, simulation focusing on
driving scenarios has gained significant attention in recent
years and is becoming a crucial element in the construction
of the digital twins in cities [6], [7]. Scenario-oriented sim-
ulation also plays a vital role in the development and testing
of autonomous driving. It enables testing and validation of
multiple algorithms and systems by conducting simulations
in different scenarios, environments, system configurations,
and driving characteristics [8].

Generally, simulators can be classified into three kinds, in-
cluding flow-based simulators (e.g., PARAMICS [9], Vissim
[10], Aimsun [11], SUMO [12]), vehicle-based simulators
(e.g., AirSim [13], LGSVL [14], CARLA [15], MetaDrive
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[16]), and data-based simulators (e.g., SimNet [17], InterSim
[18], TrafficGen [19]). While flow-based simulators can
reflect the characteristics of the real-world transportation sys-
tem and analyze various traffic flow conditions, they tend to
simplify vehicle motion behaviors and fail to consider multi-
vehicle interactions and kinematics constraints. The vehicle-
based simulators aim to construct virtual road scenarios to
verify the performances of developed algorithms. However,
the generation of background traffic flow relies on manual
editing scenarios or using collected road data, which fails to
accurately reproduce the characteristics of actual scenarios.
In addition, the data-based simulators rely on real-world
traffic data. By extracting vehicle motion features from the
datasets, these simulators allow ego vehicle to interact with
the background traffic flow. However, the datasets typically
provide fragmented, small-scale scenarios, making these sim-
ulators unable to conduct long-term continuous simulations.

To overcome these limitations, we propose LimSim, the

Long-term Interactive Multi-scenario Traffic Simulator. Lim-
Sim simulates dynamic traffic scenarios in urban road net-
works at a fine-grained level. It includes a multi-scenario
road network construction module, a multi-source traffic flow
generation module, a multi-vehicle joint decision planning
module, and a multi-dimensional scenario analysis module.
The core features of LimSim are listed below:

o Long-term: Traffic flow can be generated over long
periods under the guidance of demand construction
and route planning. Both geometric information and
topological structure are essential inputs to represent a
city-level road network, as shown in Fig. 1(a).

o Diversity: The built-in behavioral models take hetero-
geneous social value orientations and driving styles of
vehicles into account, supporting various driving behav-
iors like car-following, lane-changing, and merging, as
shown in Fig. 1(c.1) and 1(c.2).

o Interactivity: Vehicles in the scenario area are con-
trolled by a joint decision-making and planning frame-
work, offering sophisticated interactions among vehi-
cles, as shown in Fig. 1(b) and 1(d).

o Multi-scenario: The universal road components are
proposed to support a variety of road structures in the
real world. These components integrate macroscopic
and microscopic scenarios and thus ensure a consistent
simulation system, as shown in Fig. 1(e).

II. RELATED WORK

A. Flow-based simulators

The development of the flow-based simulating systems
has been going on for decades, intending to provide tech-
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(a) LimSim supports the representation of both geometric information and topological structure of road networks derived from vector maps.

(b) The range of microscopic simulation is defined by the scenario area. Vehicles outside this area are controlled by classic traffic flow models, while
those within the range undergo precise decision-making and planning processes. (c.1) The social value orientations quantify the balance of interests in
the process of multi-vehicle interaction. (c.2) Heterogeneous driving behaviors are taken into account during trajectory planning. (d) Multi-vehicle joint
behavior decision-making allows all vehicles with potential interactions to display mature driving maneuvers. High-frequency parallel trajectory planning
considers vehicle’s kinematic constraints and ensures runtime efficiency. (¢) LimSim combines macroscopic traffic flow simulations for the entire road
network with microscopic vehicle motion simulations in specific scenarios, providing a comprehensive representation of traffic behaviour.

nical support for urban planners and managers. PARAMICS
(Parallel Microscopic Simulator) was released as commercial
software by Quadstone in 1998, which integrates simulation,
visualization, interactive road network drawing, adaptive
signal control, online simulation data statistical analysis,
and traffic control strategy evaluation, among other features
[9]. Vissim is a commercial microscopic traffic simulation
software developed by PTV GmbH, providing high-level
visualization of complex traffic situations with realistic traffic
models [10]. CORSIM (CORridor SIMulation) is a traffic
engineering analysis and modeling software developed with
support from the Federal Highway Administration (FHWA),
which can perform complex road geometry modeling, large-
scale traffic condition simulation, traffic control, and manage-
ment simulation, road network topology and vehicle interac-
tion [20]. Aimsun is widely used by traffic engineers for traf-
fic planning, microscopic traffic simulation, traffic demand,
and related data analysis [11]. SUMO (Simulation of Urban
MObility) is a free and open-source traffic flow simulation
software developed by the German Aerospace Center (DLR)
for modeling intermodal traffic systems, including various
modes of transportation, and can perform traffic network
construction, route planning, emission calculations, and other
functions, with multiple APIs to control the simulation
remotely [12].

While flow-based simulators are powerful in facilitating
large-scale traffic simulations to demonstrate the overall
traffic conditions of the road network, they generally rely
on simplistic car-following and lane-changing models to

control vehicles, resulting in limited vehicle behavior simu-
lations. Moreover, due to the lack of strict vehicle kinematic
constraints, flow-based simulators cannot accurately capture
the microscopic movements of vehicles, thus reducing their
simulation fidelity.

B. Vehicle-based simulators

Vehicle-based simulation can also provide realistic dy-
namic simulations [21]. Early autonomous driving software
used modified commercial game engines for physical simula-
tion and visualization, providing fundamental physical assets
and interaction between objects [22], including USARSim
[23], Webots [24], SimRobot [25], Unity [26], etc. These
autonomous driving simulation engine requires compatible
open interfaces, obtainable object, and sensor parameters,
realistic graphics rendering and physical engine, and deploy-
ment of cost efficiency [27]. The following simulators are
very popular nowadays.

Gazebo is an open-source, scalable, and flexible multi-
robot 3D simulator, which is usually used along with ROS
to simulate the physical characteristics of mock objects and
realize dynamic 3D rendering and interactive communica-
tion [28]. AirSim is an Unreal Engine-based simulator that
provides physically and visually realistic simulations for a
variety of purposes, which includes vehicle simulations, city
scenarios, APIs to simplify programming, and plug-and-
play code to quickly create rich scenarios [13]. LGSVL is
an open-source autonomous driving simulator developed by
LG’s Silicon Valley laboratory based on the Unity engine,
which permits users to label and export for a high-precision
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TABLE I
COMPARISONS OF EXISTING SIMULATORS

Simulator Long Term  Vehicle Dynamic Diverse Interaction Custom Trajectory  Cost Efficiency  Transferability
Flow-based + - o + o +
Vehicle-based o + — o — +
Data-based o o o — o _
LimSim + + + + + +

— Not Available o Basic Performance

map format and also provides support for multi-type sensor
simulation including LiDAR, millimeter wave radar, GPS,
IMU, and camera [14]. CARLA is an open-source simula-
tor for autonomous driving research, which provides open
digital assets (including urban layouts, buildings, vehicles,
etc.) and supports flexible specifications of sensor suites
and environmental conditions [15]. MetaDrive is an easy-
to-install and powerful driving simulation platform that is
used to explore universal reinforcement learning algorithms
to support machine autonomy. It generates an infinite number
of driving scenarios from generating programs and importing
real data [16].

The vehicle-based simulators have more precise kinematic
constraints for trajectory planning, providing a more realistic
driving environment for testing autonomous driving decision
and planning algorithms. However, this type of simulations
lacks interactive modeling of vehicles, and cannot provide
background traffic flow with real scenario characteristics.

C. Data-based simulators

Simulators that use traffic flow data appeals to many
researchers. During the simulation process, the ego vehicles
will take different behaviors from the dataset, making it
difficult to consider the dynamic interaction between ego
vehicles and other vehicles in the road environments, since
other vehicles need to respond the behavior of ego vehicle.
This type of work is called data-based simulators, and some
of the latest work are summarized as follows.

SimNet is the first to present a machine learning-based
simulation system for ego vehicles that generates realistic
driving episodes based on historical driving data [17]. The
system’s performance improves with the amount of data used
for training and can help identify issues in planning systems.
The approach is more scalable than hand-coding actors and
can achieve high realism by directly learning behavior from
observed data. InterSim is an interactive traffic simulator
used to test autonomous driving planners, which infers the
interaction relationships between vehicles in the scenarios
and generates realistic trajectories consistent with these rela-
tionships for environmental vehicles [18]. TrafficGen is also
a data-driven method for generating realistic traffic scenarios.
It uses an autoregressive generative model with an encoder-
decoder architecture to synthesize complete traffic scenarios.
Specifically, TrafficGen places vehicles on a given map and
uses a motion forecasting model to generate multi-mode
diverse samples for vehicles’ trajectories [19].

Data-based simulators can implicitly learn multi-vehicle
interactions from natural driving environments, and simulate
how the vehicles interact with each other. However, these

+ Good Performance

simulations rely heavily on the collected dataset, making it
difficult to edit and expand the scenarios, resulting in the
problem of scenario fragmentation.

Table I provides a comparison of LimSim and other
types of simulation systems in terms of functional coverage.
Compared with three existing kinds of simulators, LimSim
is able to simulate scenarios finely and efficiently, with a
balance between real-time and fidelity. It supports the gen-
eration of dynamic traffic scenario data and system testing
for autonomous driving.

III. SYSTEM OVERVIEW

A. System framework

As shown in Fig. 2, LimSim includes four modules to sim-
ulate long-term traffic scenarios, and the detailed descriptions
of these modules are given below.

a) Multi-scenario road network construction: LimSim
defines a standardized road network representation based on
vector maps, which encompasses geometric and topological
information. LimSim can cover multiple types of road sce-
narios such as intersections, roundabouts, and ramps. Users
can construct the road network using tools such as SUMO or
generate it directly from sensor data and expert knowledge.
For long-term simulation, the route planning is carried out
based on the standardized representation of the road network
to construct road-level paths and determine feasible lanes
for vehicles on each road section of the route. The scenario
area of LimSim supports both fixed scene mode and hero
mode (moving scenes following the ego vehicles). Vehicles
in the scenario area have finer motion control to create a
more realistic traffic environment.

b) Multi-source traffic flow generation: The multi-
source traffic flow generation module in LimSim supports
several baseline microscopic traffic models, such as car-
following, lane-changing, and merging motions. It also sup-
ports customized scenarios using naturalistic driving datasets
and relevant standards. LimSim takes the continuity of traffic
flow into account in both macroscopic and microscopic
views, demonstrating compatibility and diversity while sim-
ulating real-world scenarios.

¢) Multi-vehicle joint decision-making and planning:
For controlled vehicles within the scenario area, LimSim
adopts a hierarchical design that we call the PDP process,
including three steps: Prediction, Decision-making, and Plan-
ning. Such a design not only enables control for sophis-
ticated vehicle behaviors but also matches the prevailing
autonomous driving technology stack. LimSim also adopts
microscopic traffic models for predicting the vehicles outside
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Framework of LimSim. LimSim comprises a multi-scenario road network construction module, a multi-source traffic flow generation module, a

multi-vehicle joint decision planning module, and a multi-dimensional scenario analysis module.

the scenario area, acting as inputs for multi-vehicle joint
decision-making and planning.

d) Multi-dimensional scenario analysis: LimSim cap-
tures information such as road network, vehicle properties,
vehicle motion parameters, etc., throughout the simulation
for scenario replay and data generation. It also provides
online or offline analysis of the vehicle status during the sim-
ulation process, including indicators such as safety, comfort,
energy consumption, and trajectory quality. The module sup-
ports a comprehensive evaluation of the simulation process
including scenario complexity and risk.

The four modules of LimSim form an efficient and effec-
tive scenario-oriented simulation system that is used to test
autonomous driving algorithms and facilitate transportation
planning and policy-making. LimSim supports various driv-
ing behaviors and road scenarios while maintaining a realistic
traffic environment and high data compatibility.

B. User preference

Users need to adapt the inputs of LimSim to complete
traffic flow simulation tasks. According to the description of
system modules, the input of LimSim must include the geo-
metric dimensions of roads and the topological connections
among them. Besides, traffic signal schemes or traffic sign
information are optional inputs. LimSim supports vehicle
control at signalized intersections and adjusts vehicle control
strategies based on traffic sign information, such as adjusting
the maximum vehicle speed based on road speed limits,
or limiting whether vehicles are allowed to turn left or
right based on traffic sign information. If only the road net-
work information are provided, then LimSim can randomly
generate demands and routes of vehicles for randomized
simulation. We recommend the joint simulation of LimSim
and SUMO, where necessary scenario information can be
extracted from SUMO and relevant implementation scripts
are provided. If users provide an instantaneous state of the

scenario, including the moving vehicles in the road network,
LimSim can take over and generate the subsequent motion
paths of these vehicles. More generally, users can offer a
collected scenario sequence, and LimSim can generate many
simulation scenarios based on the original sequence. We have
implemented this functionality based on the Waymo motion
dataset.

The output of LimSim includes real-time records of the
simulation, which are available to users via the database,
including road information, traffic control information, and
vehicle trajectory information. Additionally, a visual user
interface developed based on Dear PyGui' (a fast and pow-
erful graphical user interface toolkit for Python) provides
simulation visualization from the bird’s eye view.

LimSim’s interface allows users to replace algorithms
used in PDP process with their own. Specifically, ego and
other vehicles in the scenario are distinguished, and users
can use self-developed algorithms to control the motion of
the ego vehicle and then test the solutions’ performance
in the simulations. The scenario analysis module provides
evaluation information for each simulation. Users can also
extract the trajectories of all vehicles from the database to
calculate custom performance metrics. For other vehicles
in the scenario area, users can generate diverse scenarios
by modifying the strategy parameters of the other vehicles.
The customized parameters include the weights of the cost
functions in trajectory planning, the social value orientation
of vehicles, etc.

IV. FEATURES

A. Long-term simulation and evaluation

One important features of LimSim is extracting key sce-
narios through long-term simulation and evaluation. Here
we refer to key scenario as scenarios that provide a good

Thttps://github.com/hoffstadt/DearPyGui
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Fig. 3. Extracting scenarios from long-term evaluation results. Case A describes a potential collision when a vehicle takes an unprotected left turn; Case

B describes a potential rear-end collision where the following vehicle finally brakes to prevent crash.

specification for autonomous driving systems under design.
Classically, a large number of tests are required to estimate
the performance of automated vehicles reliably due to rarity
of key scenarios, which leads to high economic and time
costs [29]. To improve the efficiency of testing and valida-
tion, extracting key scenarios from driving data is critical.
Our strategy for extracting key scenarios is “One for all”,
that is, running one episode of simulation with all kinds
of scenarios contained in it. In LimSim, the city level map
includes a range of complex scenarios such as roundabouts,
intersections, motorways, etc. Different scenarios can be
easily made available in testing phase. After setting up
the environment, customized algorithms can be sufficiently
tested during one simulation episode. When one episode
of simulation is done, the key scenarios are extracted via
evaluation results.

Most existing datasets lacks context of driving scenarios
due to simplicity of scenario extraction methods. For ex-
ample, Lyft dataset is partitioned by a fixed time frequency
[30], which leads to discontinuity or incompleteness of a
scenario. LimSim fills the gap by performing long-term
scenario evaluation. We adopts the Time-to-collision (TTC),
which is defined as “The time required for two vehicles to
collide if they continue at their present speed and on the same
path” [31], as a measure of the severity of conflicts. Fig.
3 depicts extracting scenarios from the TTC curve. In this
simulation, the TTCs are above 10 seconds most of the time,
indicating that those scenarios are ordinary. However, there
are two segments with relatively short TTCs, both occurring
in more critical scenes: a vehicle making an unprotected left
turn and an emergency stop to avoid a rear-end collision.

Normally, only a few frames will be extracted to a key
scenario, which may cause incompleteness. Benefit from the
continuity of long-term simulation, LimSim improve this
strategy by looking backward and forward. On the one hand,
by adding frames before scenario begins, the states of tested
and other vehicles are clearer and easier to simulate; on the
other hand, adding frames after the ending of key scenario
makes it possible to find a feasible trajectory. Overall, the

extra frames are added to the corner cases to serve the
improvement and deployment of automated vehicles better.

B. Multi-vehicle motion control

While popular microscopic traffic flow models partially
simulate human driving habits, the social interaction be-
haviour between vehicles is still very homogeneous [32].
Nowhere is this more noticeable than when a vehicle is
changing lanes and merging. These microscopic models do
not take into account the vehicle’s kinematic constraints
and therefore fail to ensure smoothness and continuity of
vehicle motion. Thus, a more sophisticated control strategy
is required for vehicles that have a direct impact on the ego
vehicle, i.e. those in the scenario area.

We adopts the hierarchical PDP process to perform motion
control for vehicles within the scenario area. LimSim comes
with an implementation of the PDP process modified from
our previous work [33] and outperforms traffic flow models
in various metrics. LimSim also supports users’ own imple-
mentation of part or all of the algorithm in the PDP process,
allowing them to test their algorithm performance, as shown
in Fig. 4.

1) Decision-making: Joint decision-making for multiple
vehicle using Monte-Carlo Tree Search, or MCTS, has
proven to allow for social vehicle interaction and generate
traffic flows with diversity [34]. However, when simulating a
busy intersection or a congested motorway, the large number
of vehicles in the scenario area causes the search tree grows
exponentially. This results in a dramatic decrease of the
computation efficiency and the success rate of decision-
making algorithm. Actually it’s neither efficient nor realistic
to require each vehicle pays attention to every other vehicles’
movements. In LimSim, we employ a group-based MCTS
decision-making algorithm for multiple vehicles based on
the idea of dividing the global vehicle interaction problem
into a set of sub-problems with in each group.

Specifically, the decision-making procedure first calcu-
late potential interactions between each two vehicles. For
example, a cut-in vehicle and the vehicle behind it, and
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vehicles entering an intersection at the same time, both have
some potential interactions. We divide all vehicles in the
scenario area into several groups and make sure vehicles with
potential interaction are assigned to the same group. An intra-
group MCTS decision-making algorithm is then performed
for each group in turn and combined into a joint decision
result for all vehicles in scenario area. The decision results
of the previous groups are known and taken into account by
the subsequent groups.

LimSim allows vehicles with different Social Value Orien-
tations (SVOs) during the decision-making procedure [35].
During MCTS, a vehicle considers not only the effect of the
intended action on itself, i.e. reward to self, but also the risk
of that action to other surrounding vehicles, i.e. penalty to
others. Vehicles with different SVOs balance between these
two factors in varying ways, resulting in radically divergent
decision outcomes.

2) Planning: The planning algorithm with a parallel
architecture fits well as a downstream procedure of the
decision-making described above. The planner first attempts
to generate a smooth and continuous path based on each
vehicle’s decision results. It also checks whether the path
satisfies vehicle’s kinematic constraints, including turning
radius, speed/acceleration limits, etc. If the above attempts
fail and a vehicle is unable to follow its decision, the planner
switches to a larger target state space to generate a valid
trajectory, such as aborting a lane change or emergency
braking. Vehicles with different SVOs are also given different
cost weights during the planning procedure, which further
increases the diversity of vehicle trajectories.

3) Case study: We demonstrate the performance of our
PDP process in an on-ramp merging scenario from CitySim
dataset [36]. As shown in Fig. 5, the vehicle with ID 257
on the ramp acts as the ego vehicle, and the vehicle with ID
133 on the mainline competes with it for the right of way.

In case 1, the decision-making procedure is disabled. Due

Vehicle
Stopped!

Case 1
w/o Decision-maker

Case 2
Vehicle 133: Agressive

Case 3

Vehicle 133: Cooperative

Fig. 5. A merging scenario in highway. The line in the front of each vehicle
indicates its trajectory for the next 3 seconds. In case 1 the decision-maker
is disabled, causing ego vehicle performing an emergency stop. And in case
2 and case 3, vehicles possess different SVOs.

to a lack of foresighted long-term decisions, the ego vehicle
missed the best time to merge onto mainline and thus had
to brake urgently to avoid vehicle with ID 133. Instead, in
cases 2 and 3, the decision procedure is activated so that the
dangerous situation never occurs. In these two cases, vehicles
possess different SVOs, where the aggressive style means
that the vehicle is more selfish, and the cooperative style
gives more consideration to other vehicles. As a result, the
order of passage are changed.

C. Interactive scenario reconstruction

In a road environment, it would be very valuable for
simulation if a large number of real scenarios could be col-
lected and reconstructed. Currently, there are two approaches
to using real-world scenarios: scenario replay and scenario
generation [37]. In the approach of scenario replay, the
simulation system provides decision-making and planning
methods for the ego vehicle, while other vehicles in the sce-
nario drive exactly as logged. Although easy to implement,
the ego vehicle controlled by this method cannot interact with
other vehicles and is limited to testing its responsiveness in
very few scenarios. With regard to the scenario generation
method, designed models are applied to plan trajectories for
all vehicles in the log information from a certain moment
until the end. Although it can achieve interaction between
the ego vehicle and other vehicles, the subsequent vehicle
movements may deviate completely from real scenarios due
to insufficient model authenticity.

LimSim offers the interactive scenario reconstruction as
one of its core features, making the simulation scenarios as
close to the real scenarios as possible. In most cases, other
vehicles in the simulation scenario will move according to
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their original trajectory in the log data. However, if other
vehicles have to adjust their trajectories due to the impact
of the ego vehicle, they need to be controlled. To achieve
this goal, three problems have to be solved. Firstly, how
to identify which vehicles need to be controlled by the
simulation system? The original trajectories will be judged
to see whether there is any conflict with other controlled
vehicles by checking the multiple trajectories in the next
few seconds. Secondly, how to determine the control period
of the controlled vehicles? Based on the time length of
the trajectory planning process, the controlled vehicles will
obtain trajectories for next few seconds. Once these vehicles
reach the end points of the planned trajectories, they will be
released from the control of the simulation system. Finally,
after the vehicles are released from control, how to handle
them? At the current time step, they will be destroyed if the
vehicles do not have original trajectories in the log data. If the
vehicles still have their original trajectories, it is necessary
to detect whether there is any conflict between the original
trajectories and trajectories of other vehicles in the scenario
for the next few seconds. If there is no conflict, the vehicles
will return to their original trajectories; otherwise, vehicles
will not be placed in the simulation scenario temporarily until
all conflicts are resolved.

D. Performance

The generation of near-realistic traffic flows matters for a
traffic simulator. LimSim can simulate human driving behav-
ior and produce diverse traffic flows by adjusting the SVO
parameters of the PDP process. To verify the performance of
the simulated traffic flow generated by LimSim, we conduct
a simulation based on the Freeway B dataset from CitySim
[36] and analyze the speed distribution and car-following
distance distribution of the simulation results. The Freeway
B dataset is a six-lane highway in both directions, containing
two roads, a westbound road and an eastbound road. The
westbound road is relatively congested with a higher traffic
volume than the the eastbound road. Simulation results are
shown in Fig. 7.

The velocity distributions of the LimSim-generated traffic
flows and the real data closely resemble the normal dis-
tribution with similar means and standard deviations. The
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Fig. 7. Comparison of velocity and following distance between LimSim
and real data: In both the LimSim simulation and the real dataset, the speed
distributions are close to the normal distribution, with similar mean and
standard deviation values. The distributions of the following distance are
also close to the Poisson distribution, with similar parameters between the
simulated and real data. These results show that LimSim can effectively
simulate human driving behavior and generate realistic traffic flow.

mean speed of the LimSim-generated traffic flow on the
westbound road is 8.57 m/s with a standard deviation of
2.57 m/s, while the mean speed of the real data is 9.81 m/s
with a standard deviation of 2.58 m/s. The mean speed of the
LimSim-generated traffic flow on the eastbound road is 19.57
m/s with a standard deviation of 2.67 m/s, while the mean
speed of the real data is 22.62 m/s with a standard deviation
of 3.11 m/s. The average speed on the westbound road is
lower than that on the eastbound road, which is consistent
with the real dataset. Two distributions of the car-following
distance closely resembles the Poisson distribution, and the
average distance in the eastbound direction is greater than
that in the westbound direction, which is also consistent with
the dataset. Overall, LimSim can simulate human driving
behavior and provide traffic scenarios that are consistent with
the dataset.

The experiment and demo videos of LimSim can be found
on YouTube: https://youtu.be/YR2A25v0hj4.

V. CONCLUSION

In this paper, we introduce LimSim, the long-term in-
teractive traffic simulator, which ensures the continuity of
macroscopic and microscopic traffic flows and provides
multi-type fine-grained dynamic traffic scenarios. LimSim
adopts a closed-loop framework that supports a variety of
driving behaviors in different scenarios while maintaining
a realistic traffic environment and supporting multiple data
formats. LimSim performs a multi-dimensional real-time
evaluation of the long-term simulation process to extract
rare and challenging scenarios for further analysis. Besides,
LimSim provides easy-to-use APIs to help users evaluate the
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performance of their own PDP solutions.

We will open source our code and encourage community
users to extend the current framework to support more
personalised tasks, subject to license compliance. We will
continue to maintain LimSim and continuously add useful
features. We also plan to make LimSim compatible with
various datasets to provide more realistic traffic scenarios
for users involved in autonomous driving research.
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