
Fast Exact Shortest-Path Distance Queries on Large
Networks by Pruned Landmark Labeling

Takuya Akiba
The University of Tokyo
Tokyo, 113-0033, Japan

t.akiba@is.s.u-tokyo.ac.jp

Yoichi Iwata
The University of Tokyo
Tokyo, 113-0033, Japan

y.iwata@is.s.u-tokyo.ac.jp

Yuichi Yoshida
National Institute of Informatics,

Preferred Infrastructure, Inc.
Tokyo, 101-8430, Japan
yyoshida@nii.ac.jp

ABSTRACT
We propose a new exact method for shortest-path distance
queries on large-scale networks. Our method precomputes
distance labels for vertices by performing a breadth-first
search from every vertex. Seemingly too obvious and too
inefficient at first glance, the key ingredient introduced here
is pruning during breadth-first searches. While we can still
answer the correct distance for any pair of vertices from
the labels, it surprisingly reduces the search space and sizes
of labels. Moreover, we show that we can perform 32 or
64 breadth-first searches simultaneously exploiting bitwise
operations. We experimentally demonstrate that the com-
bination of these two techniques is efficient and robust on
various kinds of large-scale real-world networks. In particu-
lar, our method can handle social networks and web graphs
with hundreds of millions of edges, which are two orders of
magnitude larger than the limits of previous exact methods,
with comparable query time to those of previous methods.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks

General Terms
Algorithms, Experimentation, Performance

Keywords
Graphs, shortest paths, query processing

1. INTRODUCTION
A distance query asks the distance between two vertices

in a graph. Without doubt, answering distance queries is
one of the most fundamental operations on graphs, and it
has wide range of applications. For example, on social net-
works, distance between two users is considered to indicate
the closeness, and used in socially-sensitive search to help
users to find more related users or contents [40, 42], or to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

analyze influential people and communities [19, 6]. On web
graphs, distance between web pages is one of indicators of
relevance, and used in context-aware search to give higher
ranks to web pages more related to the currently visiting
web page [39,29]. Other applications of distance queries in-
clude top-k keyword queries on linked data [16,37], discovery
of optimal pathways between compounds in metabolic net-
works [31, 32], and management of resources in computer
networks [28,7].

Of course, we can compute the distance for each query by
using a breadth first search (BFS) or Dijkstra’s algorithm.
However, they take more than a second for large graphs,
which is too slow to use as a building block of these appli-
cations. In particular, applications such as socially-sensitive
search or context-aware search should have low latency since
they involve real-time interactions between users, while they
need distances between a number of pairs of vertices to rank
items for each search query. Therefore, distance queries
should be answered much more quickly, say, microseconds.

The other extreme approach is to compute distances be-
tween all pairs of vertices beforehand and store them in an
index. Though we can answer distance queries instantly,
this approach is also unacceptable since preprocessing time
and index size are quadratic and unrealistically large. Due
to the emergence of huge graph data, design of more mod-
erate and practical methods between these two extreme ap-
proaches has been attracting strong interest in the database
community [12,29,41,38,4,30,17].

Generally, there are two major graph classes of real-world
networks: one is road networks, and the other is complex
networks such as social networks, web graphs, biological net-
works and computer networks. For road networks, since it is
easier to grasp and exploit structures of them, research has
been already very successful. Now distance queries on road
networks can be processed in less than one microsecond for
the complete road network of the USA [1].

In contrast, answering distance queries on complex net-
works is still a highly challenging problem. The methods
for road networks do not perform well on these networks
since structures of them are totally different. Several meth-
ods have been proposed for these networks, but they suffer
from drawback of scalability. They take at least thousands
of seconds or tens of thousands of seconds to index networks
with millions of edges [41,4,2, 17].

To handle larger complex networks, apart from these exact
methods, approximate methods are also studied. That is, we
do not always have to answer correct distances. They are
successful in terms of much better scalability and very smallSIGMOD’13, June 22–27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

349

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2463676.2465315&domain=pdf&date_stamp=2013-06-22

average relative error for random queries. However, some of
these methods take milliseconds to answer queries [15, 38,
30], which is about three orders of magnitude slower than
other methods. Some other methods answer queries in mi-
croseconds [29,40], but it is reported that precision of these
methods for close pairs of vertices is not high [30, 4]. This
drawback might be critical for applications such as socially-
sensitive search or context-aware search since, in these ap-
plications, distance queries are employed to distinguish close
items.

1.1 Our Contributions
To address these issues, in this paper, we present a new

method for answering distance queries in complex networks.
The proposed method is an exact method. That is, it always
answers exactly correct distance to queries. It has much bet-
ter scalability than previous exact methods and can handle
graphs with hundreds of millions of edges. Nevertheless,
the query time is very small and around ten microseconds.
Though our method can handle directed and/or weighted
graphs as we mention later, in the following, we assume
undirected, unweighted graphs for simplicity of exposition.
Our method is based on the notion of distance labeling

or distance-aware 2-hop cover. The idea of 2-hop cover is
as follows. For each vertex u, we pick up a set C(u) of
candidate vertices so that every pair of vertices (u, v) has
at least one vertex w ∈ C(u) ∩ C(v) on a shortest path
between the pair. For each vertex u and a vertex w ∈ C(u),
we precompute the distance dG(u,w) between them. We
say that the set L(u) = {(w, dG(u,w))}w∈C(u) is the label
of u. Using labels, it is clear that the distance dG(u, v)
between two vertices u and v can be computed as min{δ+δ′ |
(w, δ) ∈ L(u), (w, δ′) ∈ L(v)}. The family of labels {L(u)}
is called a 2-hop cover. Distance labeling is also commonly
used in previous exact methods [13,12,2,17], but we propose
a totally new and different approach to compute the labels,
referred to as the pruned landmark labeling.
The idea of our method is simple and rather radical: from

every vertex, we conduct a breadth-first search and add the
distance information to labels of visited vertices. Of course,
if we naively implement this idea, we need O(nm) prepro-
cessing time and O(n2) space to store the index, which is
unacceptable. Here, n is the number of vertices and m is the
number of edges. Our key idea to make this method practi-
cal is pruning during the breadth-first searches. Let S be a
set of vertices and suppose that we already have labels that
can answer correct distance between two vertices if a shortest
path between them passes through a vertex in S. Suppose
we are conducting a BFS from v and visiting u. If there is
a vertex w ∈ S such that dG(v, u) = dG(v, w) + dG(w, u),
then we prune u. That is, we do not traverse any edges from
u. As we prove in Section 4.3, after this pruned BFS from
v, the labels can answer the distance between two vertices
if a shortest path between them passes through a vertex in
S ∪ {v}.
Interestingly, our method combines the advantages of three

different previous successful approaches: landmark-based
approximate methods [29, 38, 30], tree-decomposition-based
exact methods [41,4], and labeling-based exact methods [13,
12, 2]. Landmark-based approximate methods achieve re-
markable precision by leveraging the existence of highly cen-
tral vertices in complex networks [29]. This fact is also
the main reason of the power of our pruning: by conduct-

Table 1: Summary of experimental results of previous meth-
ods and the proposed method for exact distance queries.

Method Network |V | |E| Indexing Query

TEDI Computer 22 K 46 K 17 s 4.2 µs
[41] Social 0.6 M 0.6 M 2,226 s 55.0 µs
HCL Social 7.1 K 0.1 M 1,003 s 28.2 µs
[17] Citation 0.7 M 0.3 M 253,104 s 0.2 µs
TD Social 0.3 M 0.4 M 9 s 0.5 µs
[4] Social 2.4 M 4.7 M 2,473 s 0.8 µs

HHL Computer 0.2 M 1.2 M 7,399 s 3.1 µs
[2] Social 0.3 M 1.9 M 19,488 s 6.9 µs

Web 0.3 M 1.5 M 4 s 0.5 µs
PLL Social 2.4 M 4.7 M 61 s 0.6 µs

(this work) Social 1.1 M 114 M 15,164 s 15.6 µs
Web 7.4 M 194 M 6,068 s 4.1 µs

ing breadth-first searches from these central vertices first,
later we can drastically prune breadth-first searches. Tree-
decomposition-based methods exploit the core–fringe struc-
ture of networks [10, 27] by decomposing tree-like fringes
of low tree-width. Though our method does not explicitly
use tree decompositions, we prove that our method can effi-
ciently process graphs of small tree-width. This process indi-
cates that our method also exploits the core–fringe structure.
As with other labeling-based methods, the data structure of
our index is simple and query processing is very quick be-
cause of the locality of memory access.

Though this pruned landmark labeling scheme is already
powerful by itself, we propose another labeling scheme with
a different kind of strength and combine them to further
improve the performance. That is, we show that labeling
by breadth-first search can be implemented in a bit-parallel
way, which exploits the property that the number of bits
b in a register word is typically 32 or 64 and we can per-
form bit manipulations on these b bits simultaneously. By
this technique, we can perform BFSs from b + 1 vertices
simultaneously in O(m) time. In the beginning, this bit-
parallel labeling (without pruning) works better than the
pruned landmark labeling since pruning does not happen
much. Note that we are not talking about thread-level par-
allelism, and our bit-parallelism actually decreases the com-
putational complexity by the factor of b + 1. We can also
use thread-level parallelism in addition to these two labeling
schemes.

As we confirm in our experimental results, our method
outperforms other state-of-the-art methods for exact dis-
tance queries. In particular, it has significantly better scal-
ability than previous methods. It took only tens of seconds
for indexing networks with millions of edges. This indexing
time is two orders of magnitude faster than previous meth-
ods, which took at least thousands of seconds or even more
than one day. Moreover, our method successfully handled
networks with hundreds of millions of edges, which is again
two orders of magnitude larger than networks that have been
previously used in experiments of exact methods. The query
time is also better than previous methods for networks with
the same size, and we confirmed that the query time does
not increase rapidly against sizes of networks. We also con-
firm the size of an index of our method is comparable to
other methods.

In Table 1, we summarize our experimental results and
those of previous exact methods presented in these papers.
We listed the results for the largest two real-world complex

350

networks from each paper. In our experiments, we further
compare our method with hierarchical hub labeling [2] and
the tree-decomposition-based method [4].
In Section 2, we describe related works on exact and ap-

proximate distance queries. In Section 3, we give definitions
and notions used in this paper. Section 4 is devoted to ex-
plain our first scheme, the pruned landmark labeling. We
explain our second scheme, the bit-parallel labeling, in Sec-
tion 5. In Section 6, we mention variants of distance queries
we can handle by slightly modifying our method. We ex-
plain our experimental results in Section 7, and conclude in
Section 8.

2. RELATED WORK

2.1 Exact Methods
For exact distance queries on complex networks such as

social networks and web graphs, several methods are pro-
posed recently.
Large portion of these methods can be considered as based

on the idea of 2-hop cover [13]. Finding small 2-hop covers
efficiently is a challenging and long-standing problem [13,12,
2]. One of the latest methods is hierarchical hub labeling [2],
which is based on a method for road networks [1]. Another
latest method related to 2-hop cover is highway-centric la-
beling [17]. In this method, we first compute a spanning
tree T and use it as a “highway”. That is, when computing
distance dG(u, v) between two vertices u and v, we output
the minimum over dG(u,w1)+dT (w1, w2)+dG(w2, v) where
w1 and w2 are vertices in labels of u and v, respectively, and
dT (·, ·) is the distance metric on the spanning tree T .
An approach based on tree decompositions is also reported

to be efficient [41,4]. A tree decomposition of a graph G is a
tree T with each vertex associated with a set of vertices in G,
called a bag [35]. Also, the set of bags containing a vertex
in G forms a connected component in T . It heuristically
computes a tree decompositions and stores shortest-distance
matrices for each bag. It is not hard to compute distances
from this information. The smaller the size of the largest bag
is, the more efficient this method is. Because of the core–
fringe structure of the networks [10,27], these networks can
be decomposed into one big bag and many small bags, and
the size of the largest bag is moderate though not small.

2.2 Approximate Methods
To gain more scalability than these exact methods, ap-

proximate methods, which do not always answer correct dis-
tances, also have been studied.
The major approach is the landmark-based approach [36,

40]. The basic idea of these methods is to select a subset L of
vertices as landmarks, and precompute the distance dG(`, u)
between each landmark ` ∈ L and all the vertices u ∈ V .
When the distance between two vertices u and v is queried,
we answer the minimum dG(u, `) + dG(`, v) over landmarks
` ∈ L as an estimate. Generally, the precision for each
query depends on whether actual shortest paths pass nearby
the landmarks. Therefore, by selecting central vertices as
landmarks, the accuracy of estimates becomes much better
than selecting landmarks randomly [29, 11]. However, for
close pairs, the precision is still much worse than the average,
since lengths of shortest paths between them are small and
they are unlikely to pass nearby the landmarks [4].
To further improve the accuracy, several techniques were

Table 2: Frequently used notations.

Notation Description

G = (V,E) A graph
n Number of vertices in graph G
m Number of edges in graph G
NG(v) Neighbors of vertex v in graph G
dG(u, v) Distance between vertex u and v in graph G

PG(u, v)
Set of all the vertices on the shortest paths
between vertex u and v in graph G

proposed [15,38,30]. They typically store shortest-path trees
rooted at the landmarks instead of just storing distances
from the landmarks. To answer queries, they extract paths
from the shortest-path trees as candidates of shortest-paths,
and improve them by finding loops or shortcuts. While they
significantly improve the accuracy, the query time becomes
up to three orders of magnitude slower.

3. PRELIMINARIES

3.1 Notations
Table 2 lists the notations that are frequently used in this

paper. In this paper, we mainly focus on networks that are
modeled as graphs. Let G = (V,E) be a graph with vertex
set V and edge set E. We use symbols n and m to denote
the number of vertices |V | and the number of edges |E|,
respectively, when the graph is clear from the context. We
also denote the vertex set of G by V (G) and the edge set of
G by E(G). We denote the neighbors of a vertex v ∈ V by
NG(v). That is, NG(v) = {u ∈ V | (u, v) ∈ E}.

Let dG(u, v) denote the distance between vertices u, v. If
u and v are disconnected in G, we define dG(u, v) =∞. The
distance in graphs is a metric, thus it satisfies the triangle
inequalities. That is, for any three vertices s, t and v,

dG(s, t) ≤ dG(s, v) + dG(v, t), (1)

dG(s, t) ≥ |dG(s, v)− dG(v, t)| . (2)

We define PG(s, t) ⊆ V as the set of all vertices on the
shortest paths between vertices s and t. In other words,

PG(s, t) = {v ∈ V | dG(s, v) + dG(v, t) = dG(s, t)} .

3.2 Problem Definition
This paper studies the following problem: given a graph

G, construct an index to efficiently answer distance queries,
which asks the distance between an arbitrary pair of vertices.

For simplicity of exposition, we mainly consider undi-
rected, unweighted graphs. However, our algorithm can be
easily extended for directed and/or weighted graphs, and
we discuss about this extension in Section 6. Furthermore,
our method can answer not only distances but also shortest-
paths. This extension is also discussed in Section 6.

3.3 Labels and 2-Hop Cover
The general framework of 2-hop cover [13,12,2], or some-

times called a labeling method, is as follows. Our method
also follows this framework.

For each vertex v, we precompute a label denoted as L(v),
which is a set of pairs (u, δuv), where u is a vertex and δuv =
dG(u, v). We sometimes call the set of labels {L(v)}v∈V as
an index. To answer a distance query between vertices s and

351

t, we compute and answer Query(s, t, L) defined as follows,

Query(s, t, L) =

min {δvs + δvt | (v, δvs) ∈ L(s), (v, δvt) ∈ L(t)} .

We define Query(s, t, L) =∞ if L(s) and L(t) do not share
any vertex. We call L a (distance-aware) 2-hop cover of G
if Query(s, t, L) = dG(s, t) for any pair of vertices s and t.
For each vertex v, we store the label L(v) so that pairs

in it are sorted by their vertices. Then, we can compute
Query(s, t, L) in O(|L(s)|+ |L(t)|) time using a merge-join-
like algorithm.

4. ALGORITHM DESCRIPTION

4.1 Naive Landmark Labeling
We start with the following naive method. As the in-

dex, we conduct a BFS from each vertex and store distances
between all pairs. Though this method is too obvious and
inefficient, for the exposition of the next method, we explain
the details.
Let V = {v1, v2, . . . , vn}. We start with an empty index

L0, where L0(u) = ∅ for every u ∈ V . Suppose we con-
duct BFSs from vertices in the order of v1, v2, . . . , vn. After
the k-th BFS from a vertex vk, we add distances from vk
to labels of reached vertices, that is, Lk(u) = Lk−1(u) ∪
{(vk, dG(vk, u))} for each u ∈ V with dG(vk, u) 6= ∞. We
do not change labels for unreached vertices, that is, Lk(u) =
Lk−1(u) for every u ∈ V with dG(vk, u) =∞.
Ln is the final index. ObviouslyQuery(s, t, Ln) = dG(s, t)

for any pair of vertices s and t, and therefore, Ln is a cor-
rect 2-hop cover for exact distance queries. This is be-
cause, if s and t are reachable, then (s, 0) ∈ Ln(s) and
(s, dG(s, t)) ∈ Ln(t) for example.
This method can be considered as a variant of landmark-

based approximate methods, which we mentioned in Sec-
tion 2.2. The standard landmark-based method can be re-
garded as a method that precomputes Ll instead of Ln and
estimates distance between s and t byQuery(s, t, Ll), where
l� n is a parameter expressing the number of landmarks.

4.2 Pruned Landmark Labeling
Then, we introduce pruning to the naive method. Simi-

larly to the method above, we conduct pruned BFSs from
vertices in the order of v1, v2, . . . , vn. We start with an
empty index L′

0 and create an index L′
k from L′

k−1 using
the information obtained by the k-th pruned BFS from ver-
tex vk.
We prune BFSs as follows. Suppose that we have an index

L′
k−1 and we are conducting a BFS from vk to create a new

index L′
k. Suppose that we are visiting a vertex u with

distance δ. IfQuery(vk, u, L
′
k−1) ≤ δ, then we prune u, that

is, we do not add (vk, δ) to L′
k(u) (i.e. L′

k(u) = L′
k−1(u))

and we do not traverse any edge from vertex u. Otherwise,
we set L′

k(u) = L′
k−1(u)∪{(vk, δ)} and traverse all the edges

from the vertex u as usual. As with the previous method, we
also set L′

k(u) = L′
k−1(u) for all vertices u ∈ V that were not

visited in the k-th pruned BFS. This algorithm, performing
pruned BFSs, is described as Algorithm 1, and the whole
preprocessing algorithm is described as Algorithm 2.
Figure 1 shows examples of pruned BFSs. The first pruned

BFS from vertex 1 visits all the vertices (Figure 1a). During
the next pruned BFS from vertex 2 (Figure 1b), when we

Algorithm 1 Pruned BFS from vk ∈ V to create index L′
k.

1: procedure PrunedBFS(G, vk, L
′
k−1)

2: Q← a queue with only one element vk.
3: P [vk]← 0 and P [v]←∞ for all v ∈ V (G) \ {vk}.
4: L′

k[v]← L′
k−1[v] for all v ∈ V (G).

5: while Q is not empty do
6: Dequeue u from Q.
7: if Query(vk, u, L

′
k−1) ≤ P [u] then

8: continue
9: L′

k[u]← L′
k−1[u] ∪ {(vk, P [vk])}

10: for all w ∈ NG(v) s.t. P [w] =∞ do
11: P [w]← P [u] + 1.
12: Enqueue w onto Q.

13: return L′
k

Algorithm 2 Compute a 2-hop cover index by pruned BFS.

1: procedure Preprocess(G)
2: L′

0[v]← ∅ for all v ∈ V (G).
3: for k = 1, 2, . . . , n do
4: L′

k ← PrunedBFS(G, vk, L
′
k−1)

5: return L′
n

visit vertex 6, since Query(2, 6, L′
1) = dG(2, 1) + dG(1, 6) =

3 = dG(2, 6), we prune vertex 6 and we do not traverse edges
from it. We also prune vertices 1 and 12. As the number of
performed BFSs increases, we can confirm that the search
space gets smaller and smaller (Figure 1c,1d and 1e).

4.3 Proof of Correctness
In the following, we prove that this method computes a

correct 2-hop cover index, that is, Query(s, t, L′
n) = dG(s, t)

for any pair of vertices s and t.

Theorem 4.1. For any 0 ≤ k ≤ n and for any pair of
vertices s and t, Query(s, t, L′

k) = Query(s, t, Lk).

Proof. We prove the theorem by mathematical induc-
tion on k. Since L′

0 = L0, it is true for k = 0. Now we
assume it holds for 0, 1, . . . , k− 1 and prove it also holds for
k.

Let s, t be a pair of vertices. We assume these vertices
are reachable in G, since otherwise the answer ∞ can be
obviously obtained. Let j be the smallest number such
that (vj , δvjs) ∈ Lk(s), (vj , δvjt) ∈ Lk(t) and δvjs + δvjt =
Query(s, t, Lk). We prove that (vj , δvjs) and (vj , δvjt) are
also included in L′

k(s) and L′
k(t). This immediately leads

to Query(s, t, L′
k) = Query(s, t, Lk). Due to the symmetry

between s and t, we prove (vj , δvjs) ∈ L′
k(s).

First, for any i < j, we prove by contradiction that vi 6∈
PG(vj , s). If we assume vi ∈ PG(vj , s), from Inequality 1

Query(s, t, Lk) = dG(s, vj) + dG(vj , t)

= dG(s, vi) + dG(vi, vj) + dG(vj , t)

≥ dG(s, vi) + dG(vi, t).

Since (vi, dG(s, vi)) ∈ Lk(s) and (vi, dG(t, vi)) ∈ Lk(t), this
contradicts to the assumption of the minimality of j. There-
fore, vi 6∈ PG(vj , s) holds for any i < j.

Now we prove that (vj , dG(vj , s)) ∈ L′
k(s). Actually, we

prove a more general fact: (vj , dG(vj , u)) ∈ L′
k(u) for all

u ∈ PG(vj , s). Note that s ∈ PG(vj , s). Suppose that we

352

1

46

7
8

9

1012

2

3

5

11

(a) First BFS from ver-
tex 1. We visited all the
vertices.

1

4

7

9

12

2

5

8

10

3

6

11

(b) Second BFS from
vertex 2. We did not
add labels to five ver-
tices.

1

4

7

9

2

8

3

11

12

5
6

10

(c) Third BFS from
vertex 3. We only vis-
ited the lower half of
the vertices.

1

7

9

12

2

8

10

3

4
5

6

11

(d) Fourth BFS from
vertex 4. This time we
only visited the higher
half.

1

4

7

9

12

2

8

10

3

6
5

11

(e) Fifth BFS from ver-
tex 5. The search space
was even smaller.

Figure 1: Examples of pruned BFSs. Yellow vertices denote the roots, blue vertices denote those which we visited and labeled,
red vertices denote those which we visited but pruned, and gray vertices denote those which are already used as roots.

are conducting the j-th pruned BFS from vj to create Lj .
Let u ∈ PG(vj , s). Since PG(vj , u) ⊆ PG(vj , s) and vi 6∈
PG(vj , s) for any i < j, we have vi 6∈ PG(vj , u) for any
i < j. Therefore, Query(vj , u, L

′
j−1) > dG(vj , u) holds.

Thus, we visit all vertices u ∈ PG(vj , s) without pruning,
and it follows that (vj , dG(vj , u)) ∈ L′

j(u) ⊆ L′
k(u).

As a corollary, our method is proved to be an exact dis-
tance querying method by instantiating the theorem with
k = n.

Corollary 4.1. For any pair of vertices s and t,

Query(s, t, L′
n) = dG(s, t).

4.4 Vertex Ordering Strategies

4.4.1 Motivation
In the algorithm description above, we conducted pruned

BFSs from vertices in the order of v1, v2, . . . , vn. We can
freely choose the order, and moreover it turns out that the
order is crucial for the performance of this method as we will
see in the experimental results presented in Section 7.3.4.
To decide the order of vertices, we should select central

vertices first in the sense that many shortest paths pass
through these vertices. Since we would like to prune later
BFSs as much as possible, we want to cover larger part of
pairs of vertices by earlier BFSs. That is, the earlier labels
should offer correct distances for as many pairs of vertices as
possible, and therefore the earlier vertices should be those
who many shortest paths passes through.
This problem is quite similar to the problem of selecting

good landmarks for landmark-based approximate methods,
which is discussed well in [29]. In that problem, we also
want to select good landmarks so that many shortest path
passes through these vertices or nearby vertices.

4.4.2 Strategies
Based on the results on landmark-based methods [29], we

propose and examine the following three strategies. In ex-
periments, we basically use the Degree strategy, and com-
pare them empirically in Section 7.3.4.

Random: We order vertices randomly. We use this method
as a baseline to show the significance of other strategies.

Degree: We order vertices from those with higher degree.
The idea behind this strategy is that vertices with higher
degree have stronger connection to many other vertices and
therefore many shortest paths would pass through them.

Closeness: We order vertices from those with the highest
closeness centrality. Since computing exact closeness cen-
trality for all vertices costs O(nm) time, which is too ex-
pensive for large-scale networks, we approximate closeness
centrality by randomly sampling a small number of vertices
and computing distances from those vertices to all vertices.

4.5 Efficient Implementation

4.5.1 Preprocessing (Algorithm 1)
Index: First, in the description above, we treated L′

k−1 and
L′

k separately and explained as if we copy L′
k−1 to L′

k for
simplicity of explanation. However, this copy can be easily
avoided by keeping only one index and adding labels to it
after each pruned BFS.

Initialization: Another important note is to avoid O(n)
time initialization for each pruned BFS. The reason why this
method is efficient is that the search space of pruned BFSs
gets much more smaller than the whole graph. However
if we spend O(n) time for initialization, it would be the
bottleneck. What we want to do in the initialization is to
set all values in the array storing tentative distances as ∞
(Line 3). We can avoid O(n) time initialization as follows.
Before we conduct the first pruned BFS, we set all values in
the array P as∞. (This takes O(n) time but we do this only
once.) Then, during each pruned BFS, we store all vertices
we visited, and after each pruned BFS, we set P [v] as∞ for
all each vertex v we have visited.

Arrays: For the array storing tentative distances, it is bet-
ter to use 8-bit integers. Since networks of our interest are
small-world networks, 8-bit integers are enough to represent
distances. Using 8-bit integers, the array fits into low-level
cache memories of recent computers, resulting in the speed
up by reducing cache misses.

Querying: To evaluate queries for pruning (Line 7), it is
faster to use an algorithm different from the normal one
since we can exploit the fact here that we issue many queries
whose one endpoint is always vk. Before starting the k-th
pruned BFS from vk, we prepare an array T of length n
initialized with ∞ and set T [w] = δwvk for all (w, δwvk) ∈
L′

k−1(vk). To evaluateQuery(vk, u, L
′
k−1), for all (w, δwu) ∈

L′
k−1(u), we compute δwu + T [w] and return the minimum.

Though normal querying algorithm takes O(|L′
k−1(vk)| +

|L′
k−1(u)|) time, this algorithm runs in O(|L′

k−1(u)|) time.
As Line 7 is the bottleneck of the algorithm, this technique
speeds up preprocessing by about twice. Note that T should

353

be represented by 8-bit integers as the same reason described
above, and O(n) time initialization for array T should be
avoided in the same way for array P .

Prefetching: Unfortunately, we cannot fit the index and
the adjacency lists into the cache memory for large-scale net-
works. However, we can manually prefetch them to reduce
the cache misses, since vertices which we will access soon are
in the queue. Manual prefetching speeds up preprocessing
by about 20%.

Thread-Level Parallelism: As with parallel BFS algo-
rithms [3], the pruned BFS algorithm can be also paral-
lelized. However, for simple experimental analysis and fair
comparison to previous methods, we did not parallelize our
implementation in the experiments.

Sorting Labels: When applying merge-join-like algorithms
to answer queries, pairs in labels need to be sorted by ver-
tices. However, actually we do not need to sort explicitly by
storing ranks of vertices instead of vertices. That is, when
adding a pair (u, δ) in the i-th pruned BFS from vertex u,
we add a pair (i, δ) instead. Then, since pairs are added
from vertices with lower rank to those with higher rank, all
the labels are automatically sorted.

4.5.2 Querying
Sentinel: We add a dummy entry, (n,∞), to the label L(v)
for each v ∈ V . This dummy entry ensures that we find the
same vertices, n, in the end when scanning two labels. Thus
we can avoid to separately test whether we have scanned till
the end.

Arrays: For each label L(v), it is faster to store the array
for vertices and the array for distances separately since dis-
tances are only used when vertices match [1]. We also align
arrays to cache lines.

4.6 Theoretical Properties

4.6.1 Minimality

Theorem 4.2. Let L′
n be the index defined in Section 4.2.

L′
n is minimal in the sense that, for any vertex v and for any

pair (u, δuv) ∈ L′
n(v), there is a pair of vertices (s, t) such

that, if we remove (u, δuv) from L′
n(v), we cannot answer

the correct distance between s and t.

Proof. Let vi ∈ V and (vj , δvjvi) ∈ L′
n(vi). This implies

j < i. We show that if we remove (vj , δvjvi) from L′
n(vi)

then we cannot answer the correct distance between vi and
vj . We claim that, for any k 6= j, either (i) (vk, δvkvi) 6∈
L′

n(vi) or (vk, δvkvj) 6∈ L′
n(vj) holds, or (ii) dG(vi, vk) +

dG(vk, vj) > dG(vi, vj) holds. Suppose k < j and assume
that (ii) does not hold. Then, (i) must hold since otherwise
the j-th BFS should have pruned vertex vi and (vj , δvjvi) 6∈
L′

n(vi). Suppose k > j and assume that (ii) does not hold.
Then, vk ∈ PG(vi, vj) and therefore (vj , δvjvk) ∈ L′

j(vk),
thus the k-th BFS prunes vertex vj , leading to (vk, δvkvj) 6∈
L′

n(vj).

4.6.2 Exploiting Existence of Highly Central Vertices
Then, we compare our method with landmark-based meth-

ods to show that our method also can exploit the existence of
highly central vertices. We consider the standard landmark-
based method [29,40], which do not use any path heuristics.
As we stated in Section 2.2, by selecting central vertices as

landmarks, it attains remarkable average precision for real-
world networks. From the following theorem, we can observe
that our method is efficient for networks whose distance can
be answered by landmark-based methods with such high pre-
cision, and our method also can exploit the existence of these
central vertices.

Theorem 4.3. If we assume that the standard landmark-
based approximate method can answer correct distances to
(1− ε)n2 pairs (out of n2 pairs) using k landmarks, then the
pruned landmark labeling method gives an index with average
label size O(k + εn).

Proof Sketch. After conducting pruned BFSs from the
k landmark vertices first, at most εn2 pairs are added to the
index in total, since we never add pairs whose distance can
be answered from current labels.

4.6.3 Exploiting Small Tree-width of Fringes
Finally, we show a theoretical evidence that our method

can also exploit tree-like fringes efficiently. As we men-
tioned in Section 2.1, methods based on tree decomposi-
tions were proposed for distance queries [41, 4]. Both of
them extend methods which work efficiently for graphs of
small tree-width, and they exploit low tree-width of fringes
in real-world networks by tree decompositions. Interestingly,
though we do not use tree decompositions explicitly, we can
prove that our method can efficiently process graphs of small
tree-width. Thus, our method implicitly exploits this prop-
erty of real-world networks too. For definitions of tree-width
and tree decompositions, see [35].

Theorem 4.4. Let w be the tree-width of G. There is an
order of vertices with which the pruned landmark labeling
method takes O(wm logn+w2n log2 n) time for preprocess-
ing, stores an index with O(wn logn) space, and answers
each query in O(w logn) time.

Proof Sketch. The key ingredient is the centroid de-
composition [18] of the tree decomposition. First we con-
duct pruned BFSs from all the vertices in a centroid bag.
Then, later pruned BFSs never go beyond the bag. There-
fore, we can consider as we divided the tree decomposition
into disjoint components, each having at most half of the
bags. We recursively repeat this procedure. The number
of recurrences is at most O(logn). Since we add at most w
pairs to each vertex at each depth of recursion, the number
of pairs in each label is O(w logn). At each depth of re-
cursion, the total time consumed by pruned BFSs from the
current components is O(wm+w2n logn), where O(wm) is
the time for traversing edges and O(w2n logn) is the time
for pruning tests.

5. BIT-PARALLEL LABELING
To further speed up both preprocessing and querying, we

propose an optimizing method which exploits bit-level par-
allelism. Bit-parallel methods are those that perform differ-
ent calculations on different bits in the same word to exploit
the fact that computers can perform bitwise operations on
a word at once. The word length is commonly 32 or 64 in
computers of the day.

In the following, we denote the number of bits in a com-
puter word as b and assume bitwise operations on bit vectors
of length b can be done in O(1) time. We propose an algo-
rithm to conduct BFSs and compute labels from b+1 roots

354

Algorithm 3 Bit-parallel BFS from r ∈ V and Sr ⊆ NG(r).

1: procedure Bp-BFS(G, r, Sr)
2: (P [v], S−1

r [v], S0
r [v])← (∞, ∅, ∅) for all v ∈ V

3: (P [r], S−1
r [r], S0

r [r])← (0, ∅, ∅)
4: (P [v], S−1

r [v], S0
r [v])← (1, {v} , ∅) for all v ∈ Sr

5: Q0, Q1 ← an empty queue
6: Enqueue r onto Q0

7: Enqueue v onto Q1 for all v ∈ Sr

8: while Q0 is not empty do
9: E0 ← ∅ and E1 ← ∅
10: while Q0 is not empty do
11: Dequeue v from Q0.
12: for all u ∈ NG(v) do
13: if P [u] =∞∨ P [u] = P [v] + 1 then
14: E1 ← E1 ∪ {(v, u)}
15: if P [u] =∞ then
16: P [u]← P [v] + 1
17: Enqueue u onto Q1.

18: else if P [u] = P [v] then
19: E0 ← E0 ∪ {(v, u)}
20: for all (v, u) ∈ E0 do
21: S0

r [u]← S0
r [u] ∪ S−1

r [v]

22: for all (v, u) ∈ E1 do
23: S−1

r [u]← S−1
r [u] ∪ S−1

r [v]
24: S0

r [u]← S0
r [u] ∪ S0

r [v]

25: Q0 ← Q1 and Q1 ← ∅
26: return (P, S−1

r , S0
r)

simultaneously in O(m) time. Moreover, we also propose a
method to answer distance queries for any pair of vertices
via one of these b+ 1 vertices in O(1) time.

5.1 Bit-parallel Labels
To describe the preprocessing algorithm and the querying

algorithm, we first define what we store in the index.
As we explain in the next subsection, we conduct bit-

parallel BFSs from a vertex r and a subset of its neighbors
Sr ⊆ NG(r) with size at most b. We define

Si
r(v) = {u ∈ Sr | dG(u, v)− dG(r, v) = i} .

Since vertices in Sr are neighbors of r, for any vertex u ∈ Sr

and any vertex v ∈ V , |dG(u, v)− dG(r, v)| ≤ 1. Therefore,
for each v ∈ V , Sr can be partitioned into S−1

r (v), S0
r (v),

and S+1
r (v). That is, S−1

r (v) ∪ S0
r (v) ∪ S+1

r (v) = Sr.
We compute bit-parallel labels and store them in the in-

dex. For each vertex v ∈ V , we precompute a bit-parallel
label denoted as LBP(v). LBP(v) is a set of quadruples
(u, δuv, S

−1
u (v), S0

u(v)), where u ∈ V is a vertex, δuv =
dG(u, v) and Si

u(v) ⊆ Su is defined above. We store S−1
u (v)

and S0
u(v) by bit vectors of b bits. Note that S+1

u (v) can be
obtained as Su \ (S−1

u (v) ∪ S0
u(v)), but actually we do not

use S+1
u (v) in the querying algorithm.

In order to describe subsets of Sr by bit vectors of b bits,
we assign an unique number between one and |Sr| to each
vertex in Sr, and express presence of the i-th vertex by set-
ting the i-th bit.

5.2 Bit-parallel BFS
We once put aside the pruning discussed in Section 4.2 and

we make a bit-parallel version of the naive labeling method

discussed in Section 4.1. We introduce pruning later in Sec-
tion 5.4.

Let r ∈ V be a vertex and Sr ⊆ NG(r) be a subset of
neighbors of r with size at most b. We explain an algorithm
to compute dG(r, v), S

−1
r (v) and S0

r (v) for all v ∈ V that
are reachable from {r} ∪ Sr. The algorithm is described as
Algorithm 3. Basically we conduct a BFS from r computing
sets S−1 and S0.

Let v be a vertex. Suppose that we have already computed
S−1
r (w) for all w such that dG(r, w) < dG(r, v). We can

compute S−1
r (v) as follows,{

u ∈ Sr | u ∈ S−1
r (w), w ∈ NG(v), dG(r, w) = dG(r, v)− 1

}
,

since if u is in S−1
r (v), dG(u, v) = dG(r, v)− 1 and therefore

u is on one of the shortest paths from r to v. Similarly,
assuming that we have already computed S−1

r (w) for all w
such that dG(r, w) ≤ dG(r, v) and S0

r (w) for all w such that
dG(r, w) < dG(r, v), we can compute S0

r (v) as follows,{
u ∈ Sr | u ∈ S0

r (w), w ∈ NG(v), dG(r, w) = dG(r, v)− 1
}

∪
{
u ∈ Sr | u ∈ S−1

r (w), w ∈ NG(v), dG(r, w) = dG(r, v)
}
.

Therefore, along with the breadth-first search, we can
compute S−1

r and S0
r alternately by dynamic programming

in the increasing order of distance from r. That is, first we
compute S−1

r (v) for all v ∈ V such that dG(r, v) = 1, next
we compute S0

r (v) for all v ∈ V such that dG(r, v) = 1, then
we compute S−1

r (v) for all v ∈ V such that dG(r, v) = 2,
next we compute S0

r (v) for all v ∈ V such that dG(r, v) = 2,
and so on. Note that operations on sets can be done in O(1)
time by representing sets by bit vectors and using bitwise
operations.

5.3 Bit-parallel Distance Querying
To process a distance query between a pair of vertices

s and t, as with normal labels, we scan bit-parallel labels
LBP(s) and LBP(t). For each pair of quadruples that share
the same root vertex, (r, δrs, S

−1
r (s), S0

r (s)) ∈ LBP(s) and
(r, δrt, S

−1
r (t), S0

r (t)) ∈ LBP(t), from these quadruples we
compute distance between s and t via one of vertices in {r}∪
Sr. That is, we compute δ = min

u∈{r}∪Sr

{dG(s, u) + dG(u, t)}.

A naive way is to compute dG(s, u) and dG(u, t) for all u
and take the minimum, which takes O(|Sr|) time. However,
we propose an algorithm to compute δ in O(1) time by ex-
ploiting bitwise operations.

Let δ̃ = dG(s, r) + dG(r, t). Since δ̃ is an upper bound on
δ and dG(s, u) ≥ dG(s, r) − 1, dG(u, t) ≥ dG(r, t) − 1 for all

u ∈ Sr, δ̃ − 2 ≤ δ ≤ δ̃. Therefore, what we have to do is to
judge whether the distance δ is δ̃ − 2, δ̃ − 1 or δ̃.

This can be done as follows. If S−1
r (s)∩ S−1

r (t) 6= ∅, then
δ = δ̃ − 2. Otherwise, if S0

r (s) ∩ S−1
r (t) 6= ∅ or S−1

r (s) ∩
S0
r (t) 6= ∅, then δ = δ̃ − 1, and otherwise δ = δ̃. Note that

computing intersections of sets can be done by bitwise AND
operations. Therefore, all these operations can be done in
O(1) time. Thus, the distance δ can be computed in O(1)
time, and, in total, we can answer each query in O(|LBP(s)|+
|LBP(t)|) time.

5.4 Introducing to Pruned Labeling
Now we discuss how to combine this bit-parallel labeling

methods and the pruned labeling method discussed in Sec-
tion 4.2. We propose a simple and efficient way as follows.

355

First we conduct bit-parallel BFSs without pruning for t
times, where t is a parameter. Then, we conduct pruned
BFSs using both the bit-parallel labels and normal labels
for pruning.
This method exploits different strength of the pruned la-

beling method and the bit-parallel labeling method. In the
beginning, pruning does not work much and pruned BFSs
visits large portion of the vertices. Therefore, instead of
pruned labeling, we use bit-parallel labeling without pruning
to efficiently cover a larger part of pairs of vertices. Skip-
ping the overhead of vain pruning tests also contributes the
speed-up.
As roots and neighbor sets for bit-parallel BFSs, we pro-

pose to greedily use vertices with the highest priority: we
select a vertex with the highest priority as the root r among
remaining vertices, and we select up to b vertices with the
highest priority as the set Sr among remaining neighbors.
As we see in the experimental results in Section 7, this

method improves the preprocessing time, the index size and
the query time. Moreover, as we also confirm in the ex-
periments, if we do not set too large value as t, at least it
does not spoil the performance. Therefore we do not have
to be too serious about finding a proper value for t, and our
method is still easy to use.

6. VARIANTS AND EXTENSIONS
Shortest-Path Queries: To answer not only distances but
also shortest-paths, we store sets of tuples instead of pairs
as labels. Label L(v) is a set of triples (u, δuv, puv), where
puv ∈ V is the parent of u in the pruned breadth-first search
tree rooted at u created by the pruned BFS from u. We can
restore the shortest path between v and u by ascending the
tree from v to the parents.

Weighted Graphs: To treat weighted graphs, the only
necessary change is to perform pruned Dijkstra’s algorithm
instead of pruned BFSs. Bit-parallel labeling cannot be used
for weighted graphs.

Directed Graphs: To treat directed graphs, we first rede-
fine dG(u, v) as the distance from u to v. Then, we store two
labels LOUT(v) and LIN(v) for each vertex. Label LOUT(v)
is a set of pairs (u, δvu), where u ∈ V and δvu = dG(v, u),
and Label LIN(v) is a set of pairs (u, δuv), where u ∈ V and
δuv = dG(u, v). We can answer the distance from vertex s
to vertex t by LOUT(s) and LIN(t). To compute these labels,
from each vertex, we conduct pruned BFSs twice: once in
the forward direction and once in the reverse direction.

Disk-based Query Answering: To answer a distance
query, our querying algorithm only refers to two contiguous
regions. Thus, if the index is disk resident, we can answer
queries with two disk seek operations, which would be still
much faster than an in-memory BFS.

7. EXPERIMENTS
We conducted experiments on a Linux server with Intel

Xeon X5670 (2.93 GHz) and 48GB of main memory. The
proposed method was implemented in C++. We used 8-bit
integers to represent distances, 32-bit integers to represent
vertices, and 64-bit integers to conduct bit-parallel BFSs.
For vertex ordering, we mainly use the Degree strategy
and we do not specify the vertex ordering strategy unless
we use other strategies. For query time, we generally report
the average time for 1,000,000 random queries.

Table 4: Datasets

Dataset Network |V | |E|
Gnutella Computer 63 K 148 K
Epinions Social 76 K 509 K
Slashdot Social 82 K 948 K
Notredame Web 326 K 1.5 M
WikiTalk Social 2.4 M 4.7 M
Skitter Computer 1.7 M 11 M
Indo Web 1.4 M 17 M
MetroSec Computer 2.3 M 22 M
Flickr Social 1.8 M 23 M
Hollywood Social 1.1 M 114 M
Indochina Web 7.4 M 194 M

7.1 Datasets
To show the efficiency and robustness of our method, we

conducted experiments on various real-world networks: five
social networks, three web graphs and three computer net-
works. We treated all the graphs as undirected, unweighted
graphs. Basically we used five smaller datasets to compare
the performance between the proposed method and previ-
ous methods and to analyze the behavior of these methods,
and used larger six datasets to show the scalability of the
proposed method. The types of networks, the numbers of
vertices and edges are presented in Table 4.

7.1.1 Detailed Description
Gnutella: This is a graph created from a snapshot of the
Gnutella P2P network in August 2002 [34].

Epinions: This graph is the on-line social network in Epin-
ions (www.epinions.com), where each vertex represents a
user and each edge represents a trust relationship [33].

Slashdot: This is the on-line social network in Slashdot
(slashdot.org) obtained in February 2009. Vertices cor-
respond to users and edges correspond to friend/foe links
between the users [23].

NotreDame: This is a web graph between pages from Uni-
versity of Notre Dame (domain nd.edu) collected in 1999 [5].

WikiTalk: This is the on-line social network among editors
of Wikipedia (www.wikipedia.org) created by communica-
tion on edits on talk pages by till January 2008 [21,20].

Skitter: This is an Internet topology graph created from
traceroutes run in 2005 by Skitter [22].

Indo: This is a web graph between pages in .in domain
crawled in 2004 [9,8].

MetroSec: This is a graph constructed from Internet traffic
captured by MetroSec. Each vertex represents a computer
and two vertices are linked if they appear in a packet as
sender and destination [24].

Flickr: This is the on-line social network in a photo-sharing
site, Flickr (www.flickr.com) [26].

Indochina: This is a web graph of web pages in the country
domains of Indochina countries, crawled in 2004 [9,8].

Hollywood: This is a social network of movie actors. Two
actors are linked if they appeared in a movie together by
2009 [9,8].

7.1.2 Statistics
First, we investigated the degree distribution of the net-

works, since degrees of vertices play important roles in our
method when we use Degree strategy for vertex ordering.

356

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u

m
u

la
ti
v
e

 F
re

q
u

e
n

c
y

Degree

Gnutella
Epinions
Slashdot

NotreDame
WikiTalk

(a) Degree distribution of
smaller five datasets.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
u

m
u

la
ti
v
e

 F
re

q
u

e
n

c
y

Degree

Skitter
Indo

MetroSec
Flickr

Hollywood
Indochina

(b) Degree distribution of
larger six datasets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16

F
ra

c
ti
o

n

Distance

Gnutella
Epinions
Slashdot

NotreDame
WikiTalk

(c) Distance distribution of
smaller five datasets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16

F
ra

c
ti
o

n

Distance

Skitter
Indo

MetroSec
Flickr

Hollywood
Indochina

(d) Distance distribution of
larger six datasets.

Figure 2: Properties of the datasets.

Table 3: Performance comparison between the proposed method and previous methods for the real-world datasets. IT denotes
indexing time, IS denotes index size, QT denotes query time, and LN denotes average label size for each vertex. DNF means
it did not finish in one day or ran out of memory.

Dataset
Pruned Landmark Labeling Hierarchical Hub Labeling [2] Tree Decomposition [4]

BFS
IT IS QT LN IT IS QT LN IT IS QT

Gnutella 54 s 209 MB 5.2 µs 644+16 245 s 380 MB 11 µs 1,275 209 s 68 MB 19 µs 3.2 ms
Epinions 1.7 s 32 MB 0.5 µs 33+16 495 s 93 MB 2.2 µs 256 128 s 42 MB 11 µs 7.4 ms
Slashdot 6.0 s 48 MB 0.8 µs 68+16 670 s 182 MB 3.9 µs 464 343 s 83 MB 12 µs 12 ms
NotreDame 4.5 s 138 MB 0.5 µs 34+16 10,256 s 64 MB 0.4 µs 41 243 s 120 MB 39 µs 17 ms
WikiTalk 61 s 1.0 GB 0.6 µs 34+16 DNF - - - 2,459 s 416 MB 1.8 µs 197 ms
Skitter 359 s 2.7 GB 2.3 µs 123+64 DNF - - - DNF - - 190 ms
Indo 173 s 2.3 GB 1.6 µs 133+64 DNF - - - DNF - - 150 ms
MetroSec 108 s 2.5 GB 0.7 µs 19+64 DNF - - - DNF - - 150 ms
Flickr 866 s 4.0 GB 2.6 µs 247+64 DNF - - - DNF - - 361 ms
Hollywood 15,164 s 12 GB 15.6 µs 2,098+64 DNF - - - DNF - - 1.2 s
Indochina 6,068 s 22 GB 4.1 µs 415+64 DNF - - - DNF - - 1.5 s

Figures 2a and 2b are the log-log plot of degree complemen-
tary cumulative distribution. As expected, we can confirm
that all these networks generally exhibit power-law degree
distributions.
Then, we also examined the distribution of distances. Fig-

ures 2c and 2d show distribution of distances for 1,000,000
random pairs of vertices. As we can observe from these fig-
ures, these networks are also small-world networks, in the
sense that the average distance is very small.

7.2 Performance
First we present the performance of our method on the

real-world datasets to show the efficiency and robustness of
our method. Table 3 shows the performance of our method
for the datasets. IT denotes preprocessing time, IS denotes
index size, QT denotes average query time for 1,000,000
random queries, and LN denotes the average label size for
each vertex, in the format of the size of normal labels (left)
plus the size of bit-parallel labels (right). We set the number
of times we conduct bit-parallel BFSs as 16 for first five
datasets and 64 for the rest.
In Table 3, we also listed the performance of two of the

state-of-the-art existing methods. One is hierarchical hub
labeling [2], which is also based on distance labeling. The
other one is based on tree decompositions [4], which is an
improved version of TEDI [41]. For these previous methods,
we used the implementations by the authors of these meth-
ods, both in C++. Experiments for hierarchical hub labeling
were conducted on a Windows server with two Intel Xeon
X5680 (3.33GHz) and 96GB of main memory. Experiments
for the tree-decomposition-based method were conducted on
our environment described above. We also described the av-
erage time to compute distance by breadth-first search for

1,000 random pairs of vertices. Among these four methods
including the proposed method, only the preprocessing of
hierarchical hub labeling [2] was parallelized to use all the
12 cores. All the other timing results are sequential.

7.2.1 Preprocessing Time and Scalability
Our emphasis is particularly on the large improvement in

the preprocessing time, leading to much better scalability.
First, we successfully preprocessed the largest two datasets
Hollywood and Indochina with millions of vertices and hun-
dreds of millions of edges in moderate preprocessing time.
This is improvement of two orders of magnitude on the graph
size we can handle since, as we listed in Table 1, other exist-
ing exact distance querying methods take thousands or tens
of thousands of seconds to preprocess graphs with millions
of edges.

For next four datasets with tens of millions of edges, it
took less than one thousand seconds, while the previous
methods did not finish after one day or ran out of mem-
ory. For smaller six datasets, they took at most one minute,
and about at least 50 times faster than the previous methods
for the most of them.

7.2.2 Query Time
The average query time was generally microseconds and

at most 16 microseconds. For almost all the smaller five
datasets, the query time of the proposed method is faster
than the query time of the previous methods. Indeed, from
Table 1, we can also observe that the query time of our
method is comparable to all the existing methods for graphs
of these sizes. Moreover, we can confirm that the query time
does not increase much for larger networks.

357

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

L
a

b
e

ls

x-th BFS

Skitter
Indo

Flickr

(a) Number of vertices labeled in
each pruned BFS.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ti
le

x-th BFS

Skitter
Indo

Flickr

(b) Cumulative distribution of the
number of vertices labeled in each
pruned BFS.

10
0

10
1

10
2

10
3

10
4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
a

b
e

l
S

iz
e

Percentile

Skitter
Indo

Flickr

(c) Distribution of the sizes of labels.

Figure 3: Effect of pruning and sizes of labels.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

Gnutella
Epinions
Slashdot

(a) Average

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

d = 3
d = 4
d = 5
d = 6
d = 7
d = 8

(b) Distance-wise, Gnutella

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8

(c) Distance-wise, Epinions

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

d = 2
d = 3
d = 4
d = 5
d = 6
d = 7

(d) Distance-wise, Slashdot

Figure 4: Fraction of pairs of vertices whose distance can be answered by index, against number of performed pruned BFS.

7.2.3 Index Size
As for the smaller five networks, results demonstrate that

our method is comparable to the previous methods with
respect to index size. However, even though nowadays com-
puters with tens of gigabytes of memory are neither rare nor
expensive, reducing the index size can be an important next
research issue.

7.3 Analysis
Next we analyze the behavior of our method to investigate

why our method is efficient.

7.3.1 Pruned BFS
First we study how labels are computed and stored. Fig-

ure 3a shows the number of distances added to labels in each
pruned BFS, and Figure 3b shows the cumulative distribu-
tion of it, that is, the ratio of the distances stored no later
than each step to all the distances stored in the end. We did
not use bit-parallel BFSs for these experiments.
From these figures, we can confirm the large impact of

the pruning. Figure 3a shows that the number of distances
added to labels in each BFS decreases so rapidly. For ex-
ample, after 1,000 times of BFSs, for all the three datasets
distances are added to the labels of only less than 10% of
the vertices, and after conducting 10,000 times of BFSs, for
all the three datasets distances are added to the labels of
only less than 1% of the vertices. Figure 3b also shows that
large portion of the labels are computed in the beginning.

7.3.2 Sizes of Labels
Figure 3c shows the distribution of the sizes of labels after

the whole preprocessing, sorted in the ascending order of
sizes. We can observe that the size of a label each vertex
has do not differ much for different vertices, and few vertices
have much larger labels than the average. This shows that
the query time of our method is quite stable.

If you are anxious about vertices with unusually large la-
bels, you can precompute the distance between these vertices
and all the vertices and answer it directly, since the number
of such vertices are few as shown in Figure 3c.

7.3.3 Pair Coverage
Figure 4a illustrates the ratio of the covered pairs of ver-

tices, that is, the pairs of vertices whose distances can be
answered correctly by current labels, at each step. We used
1,000,000 random pairs to estimate these ratios. We can ob-
serve that most pairs are covered in the beginning. This
shows that such a large portion of pairs have the short-
est paths that pass such a small portion of central vertices,
which are selected by the Degree strategy. This is the rea-
son why landmark-based approximate methods have good
precision, and also the reason why our pruning works so
effectively.

Figures 4b, 4c and 4d illustrate the ratio of the covered
pairs of vertices at each step with pairs classified by dis-
tance. They show that generally distant pairs are covered
earlier than close pairs. This is the reason why the preci-
sion of landmark-based approximate methods for close pairs
are far worse than the precision for distant pairs. On the
other hand, our method aggressively exploits this property:
because distant pairs are covered in the beginning, we can
prune distant vertices when processing other vertices, which
results in fast preprocessing.

7.3.4 Vertex Ordering Strategies
Next we see the effect of vertex ordering strategies. Ta-

ble 5 describes the average size of a label for each vertex
using different vertex ordering strategies described in Sec-
tion 4.4. We did not use bit-parallel BFSs for these exper-
iments. As we can see, results are not so different between
the Degree strategy and the Closeness strategy. The De-
gree strategy might be slightly better. On the other hand,

358

10
2

10
3

10
4

 1 4 16 64 256 1024

P
re

p
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

Bit-parallel BFS

Skitter
Indo

Flickr

(a) Preprocessing time

10
-6

10
-5

 1 4 16 64 256 1024

Q
u

e
ry

 T
im

e
 (

s
)

Bit-parallel BFS

Skitter
Indo

Flickr

(b) Query time

 10

 100

 1000

 1 4 16 64 256 1024

L
a

b
e

l
S

iz
e

Bit-parallel BFS

Skitter
Indo

Flickr

(c) Average size of a normal label

 1

 10

 100

 1 4 16 64 256 1024

D
a

ta
 S

iz
e

 (
G

B
)

Bit-parallel BFS

Skitter
Indo

Flickr

(d) Index size

Figure 5: Performance against number of bit-parallel BFSs.

Table 5: Average size of a label for each vertex against dif-
ferent vertex ordering strategies.

Dataset Random Degree Closeness

Gnutella 6,171 781 865
Epinions 7,038 124 132
Slashdot 8,665 216 234
NotreDame DNF 60 82
WikiTalk DNF 118 158

the result of the Random strategy is much worse than other
two strategies. This shows that by the Degree and Close-
ness strategies we can successfully capture central vertices.

7.3.5 Bit-parallel BFS
Finally, we see the effect of bit-parallel BFSs discussed in

Section 5. Figure 5 shows the performance of our method
against different number of times we conduct bit-parallel
BFSs.
Figure 5a illustrates preprocessing time. It shows that,

with a proper number of bit-parallel BFSs, preprocessing
time gets two to ten times faster, resulting in the further
enhancement to the scalability of our method. Figure 5b
illustrates query time. We can confirm that query time also
gets faster. Figure 5c shows the average size of a normal la-
bel for each vertex. As we increase the number of bit-parallel
BFSs, many pairs are covered by special labels computed by
bit-parallel BFSs, and the size of normal labels decreases.
Figure 5d shows the index size. With a proper number of
bit-parallel BFSs, index size also decreases.
Another important finding from these figures is that the

performance of our method is not too sensitive to the pa-
rameter of the number of bit-parallel BFSs. As they show,
the performance of our method does not become worse much
unless we choose a too big number. The proper parameters
seem to common between different networks. Therefore, our
method still is easy to use with this bit-parallel technique.

8. CONCLUSIONS
In this paper, we proposed a novel and efficient method for

exact shortest-path distance queries on large graphs. Our
method is based on distance labeling to vertices, which is
common to the existing exact distance querying methods,
but our labeling algorithm stands on a totally new idea.
Our algorithm conducts breadth-first search (BFS) from all
the vertices with pruning. Though the algorithm is simple,
our pruning surprisingly reduce the search space and the
labels, resulting in fast preprocessing time, small index size
and fast query time. Moreover, we also proposed another la-
beling scheme exploiting bit-level parallelism, which can be
easily combined with the pruned labeling method to further

improve the performance. Extensive experimental results
on large-scale real-world networks of various types demon-
strated the efficiency and robustness of our methods. In
particular, our method can handle networks with hundreds
of millions of vertices, which are two orders of magnitude
larger than the limits of the previous methods, with compa-
rable index size and query time.

We plan to investigate ways to handle even larger graphs,
where indices and/or graphs might not fit in main mem-
ory. The first way is to reduce the index size by reducing
graphs exploiting obvious parts and symmetry [30, 14] and
compressing labels by making dictionaries of common sub-
trees for shortest path trees [1]. Another way is disk-based
or distributed implementation. As we stated in Section 6,
disk-based query answering is obvious and ready, and the
challenges are particularly on preprocessing. However, since
our preprocessing algorithm is a simple algorithm based on
BFS, we can leverage the large body of existing work on
BFS. In particular, since pruning can be done locally, the
preprocessing algorithm would perform well on BSP-model-
based distributed graph processing platforms [25].

9. ACKNOWLEDGMENTS
We would like to thank Hiroshi Imai for critical reading

of the manuscript, and Daniel Delling for providing us the
experimental results of hierarchical hub labeling [2]. We
would also like to thank the anonymous reviewers for their
constructive suggestions on improving the paper. Yuichi
Yoshida is supported by JSPS Grant-in-Aid for Research
Activity Start-up (24800082), MEXT Grant-in-Aid for Sci-
entific Research on Innovative Areas (24106001), and JST,
ERATO, Kawarabayashi Large Graph Project.

10. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F.

Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In SEA, pages 230–241, 2011.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Hierarchical hub labelings for shortest paths.
In ESA, pages 24–35. 2012.

[3] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader.
Scalable graph exploration on multicore processors. In
SC, pages 1–11, 2010.

[4] T. Akiba, C. Sommer, and K. Kawarabayashi.
Shortest-path queries for complex networks: exploiting
low tree-width outside the core. In EDBT, pages
144–155, 2012.

[5] R. Albert, H. Jeong, and A. L. Barabasi. The diameter
of the world wide web. Nature, 401:130–131, 1999.

359

[6] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In KDD, pages
44–54, 2006.

[7] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. Hwang. Complex networks: Structure and
dynamics. Physics reports, 424(4-5):175–308, 2006.

[8] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
label propagation: a multiresolution coordinate-free
ordering for compressing social networks. In WWW,
pages 587–596, 2011.

[9] P. Boldi and S. Vigna. The webgraph framework I:
compression techniques. In WWW, pages 595–602,
2004.

[10] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and
D. J. Watts. Network robustness and fragility:
Percolation on random graphs. Physical Review
Letters, 85:5468–5471, 2000.

[11] W. Chen, C. Sommer, S.-H. Teng, and Y. Wang. A
compact routing scheme and approximate distance
oracle for power-law graphs. TALG, 9(1):4:1–26, 2012.

[12] J. Cheng and J. X. Yu. On-line exact shortest distance
query processing. In EDBT, pages 481–492, 2009.

[13] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In
SODA, pages 937–946, 2002.

[14] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving
graph compression. In SIGMOD, pages 157–168, 2012.

[15] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum.
Fast and accurate estimation of shortest paths in large
graphs. In CIKM, pages 499–508, 2010.

[16] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks:
ranked keyword searches on graphs. In SIGMOD,
pages 305–316, 2007.

[17] R. Jin, N. Ruan, Y. Xiang, and V. Lee. A
highway-centric labeling approach for answering
distance queries on large sparse graphs. In SIGMOD,
pages 445–456, 2012.

[18] C. Jordan. Sur les assemblages de lignes. J. Reine
Angew Math, 70:185–190, 1869.

[19] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
KDD, pages 137–146, 2003.

[20] J. Leskovec, D. Huttenlocher, and J. Kleinberg.
Predicting positive and negative links in online social
networks. In WWW, pages 641–650, 2010.

[21] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed
networks in social media. In CHI, pages 1361–1370,
2010.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: Densification laws, shrinking diameters and
possible explanations. In KDD, pages 177–187, 2005.

[23] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural
cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[24] C. Magnien, M. Latapy, and M. Habib. Fast
computation of empirically tight bounds for the
diameter of massive graphs. J. Exp. Algorithmics,
13:10:1.10–10:1.9, Feb. 2009.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[26] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In IMC, pages 29–42, 2007.

[27] M. E. J. Newman, S. H. Strogatz, and D. J. Watts.
Random graphs with arbitrary degree distributions
and their applications. Physical Review E,
64(2):026118 1–17, 2001.

[28] R. Pastor-Satorras and A. Vespignani. Evolution and
structure of the Internet: A statistical physics
approach. Cambridge University Press, 2004.

[29] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis.
Fast shortest path distance estimation in large
networks. In CIKM, pages 867–876, 2009.

[30] M. Qiao, H. Cheng, L. Chang, and J. X. Yu.
Approximate shortest distance computing: A
query-dependent local landmark scheme. In ICDE,
pages 462–473, 2012.

[31] S. A. Rahman, P. Advani, R. Schunk, R. Schrader,
and D. Schomburg. Metabolic pathway analysis web
service (pathway hunter tool at cubic).
Bioinformatics, 21(7):1189–1193, 2005.

[32] S. A. Rahman and D. Schomburg. Observing local and
global properties of metabolic pathways: ‘load points’
and ‘choke points’ in the metabolic networks.
Bioinformatics, 22(14):1767–1774, 2006.

[33] M. Richardson, R. Agrawal, and P. Domingos. Trust
management for the semantic web. In ISWC, volume
2870, pages 351–368. 2003.

[34] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the
gnutella network. IEEE Internet Computing,
6(1):50–57, Jan. 2002.

[35] N. Robertson and P. D. Seymour. Graph minors. III.
Planar tree-width. J. Comb. Theory, Ser. B,
36(1):49–64, 1984.

[36] L. Tang and M. Crovella. Virtual landmarks for the
internet. In SIGCOMM, pages 143–152, 2003.

[37] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k
exploration of query candidates for efficient keyword
search on graph-shaped (RDF) data. In ICDE, pages
405–416, 2009.

[38] K. Tretyakov, A. Armas-Cervantes,
L. Garćıa-Bañuelos, J. Vilo, and M. Dumas. Fast fully
dynamic landmark-based estimation of shortest path
distances in very large graphs. In CIKM, pages
1785–1794, 2011.

[39] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis.
Searching the wikipedia with contextual information.
In CIKM, pages 1351–1352, 2008.

[40] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B.
Golgher, D. d. C. Reis, and B. Ribeiro-Neto. Efficient
search ranking in social networks. In CIKM, pages
563–572, 2007.

[41] F. Wei. Tedi: efficient shortest path query answering
on graphs. In SIGMOD, pages 99–110, 2010.

[42] S. A. Yahia, M. Benedikt, L. V. S. Lakshmanan, and
J. Stoyanovich. Efficient network aware search in
collaborative tagging sites. PVLDB, 1(1):710–721,
2008.

360

