
Orion: Interference-aware, Fine-grained GPU Sharing
for ML Applications

Foteini Strati
ETH Zurich

Xianzhe Ma
ETH Zurich

Ana Klimovic
ETH Zurich

Abstract
GPUs are critical for maximizing the throughput-per-Watt
of deep neural network (DNN) applications. However, DNN
applications often underutilize GPUs, even when using large
batch sizes and eliminating input data processing or commu-
nication stalls. DNN workloads consist of data-dependent
operators, with different compute and memory requirements.
While an operator may saturate GPU compute units or mem-
ory bandwidth, it often leaves other GPU resources idle.
Despite the prevalence of GPU sharing techniques, current
approaches are not sufficiently fine-grained or interference-
aware to maximize GPU utilization while minimizing inter-
ference at the granularity of 10s of 𝜇s. We propose Orion, a
system that transparently intercepts GPU kernel launches
from multiple clients sharing a GPU. Orion schedules work
on the GPU at the granularity of individual operators and
minimizes interference by taking into account each opera-
tor’s compute andmemory requirements.We integrate Orion
in PyTorch and demonstrate its benefits in various DNN
workload collocation use cases. Orion significantly improves
tail latency compared to state-of-the-art baselines for a high-
priority inference job while collocating best-effort inference
jobs to increase per-GPU request throughput by up to 7.3×,
or while collocating DNN training, saving up to 1.49× in
training costs compared to dedicated GPU allocation.

CCSConcepts: •Computingmethodologies→Machine
learning.

Keywords: Machine Learning, GPUs
ACM Reference Format:
Foteini Strati, XianzheMa, andAnaKlimovic. 2024. Orion: Interference-
aware, Fine-grained GPU Sharing for ML Applications. In Nine-
teenth European Conference on Computer Systems (EuroSys ’24), April
22–25, 2024, Athens, Greece. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3627703.3629578

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629578

(a) GPU Compute Throughput Utilization

(b) GPU Memory Bandwidth Utilization

Figure 1. GPU resource utilization for a MobileNetV2 train-
ing iteration with batch size 96 [84]. Utilization is bursty and
often low as individual operators saturate compute units or
memory bandwidth, often leaving one resource type idle.

1 Introduction
Deep Neural Network (DNN) applications achieve orders of
magnitude higher throughput-per-Watt when executing on
GPUs compared to CPUs [89, 96, 99, 101]. However, due to
the high price of GPU hardware, the ultimate energy and cost
savings of using GPUs for DNN jobs depend on operating
the accelerators at high utilization.

Despite the high compute and memory intensity of DNN
computations [86], individual DNN workloads often under-
utilize GPU hardware [98, 99]. Latency-critical inference jobs,
such as AutonomousDriving [77], fraud detection and recom-
mendation systems [16] use small batch sizes to meet service
level objectives, resulting in insufficient parallelism to keep
GPU compute units busy [49, 50, 75]. Training jobs attempt
to maximize batch size for high throughput, however the
batch size affects model convergence and must be tuned with
other hyperparameters [47, 56, 88, 95, 97]. Hence, in practice,
training jobs run with “large enough” batch sizes, which may
underutilize sizeable GPU memory capacity. Training jobs
may also stall waiting for input data [48, 62, 72, 73, 108] or
bottleneck on communication [80, 107], leaving GPUs idle.

1075

https://orcid.org/0000-0003-3364-2109
https://orcid.org/0009-0000-1400-6735
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3627703.3629578
https://doi.org/10.1145/3627703.3629578
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629578&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

However, even if we eliminate input data stalls (e.g., by
scaling out data preprocessing [34, 48, 108]), alleviate com-
munication stalls (e.g., with asynchronous updates [40, 44],
gradient compression [68], and in-network aggregation [85]),
and pragmatically maximize batch sizes, DNN workloads still
underutilize GPU hardware. Figure 1 shows the fundamen-
tal reason why: a DNN workload consists of many data-
dependent operators that run for short periods of time (10s-
1000s of 𝜇s), each with different compute and memory re-
quirements. Utilization is bursty and low on average (see red
dotted lines) as individual operators saturate compute units
or memory bandwidth, but often leave a resource type idle.
For the MobileNetV2 training job in Figure 1, GPU compute
throughput and memory bandwidth utilization are below
40% and 55%, on average, respectively. The problem of GPU
underutilization is only getting worse as hardware vendors
continue to scale GPU memory and compute capacity [11].
A common solution is to share GPUs between jobs. The

main challenge is maximizing utilization while mitigating
interference between jobs for high performance. Temporal
sharing techniques time-slice the GPU at the granularity of
an inference request or training minibatch [39, 49, 100, 102–
104]. This can lead to head-of-line blocking, since incoming
inference requests or training minibatches need to wait for
the ongoing tasks to finish execution on the GPU before
being scheduled (see section 6), and still wastes resources
when the operators of individual tasks do not consume all
GPU compute or memory bandwidth. Spatial sharing im-
proves utilization, however, current techniques are either
too coarse-grained (e.g., Multi-Instance GPUs [12], Zico [67],
Tick-Tock [94]) or are not sufficiently interference-aware
(e.g., Multi-Process Service (MPS) [25], GPU Streams [15],
REEF [50], Paella [75]).
Figure 2 shows that state-of-the-art GPU sharing tech-

niques leave performance on the table. We collocate three
pairs of DNN jobs whose aggregate resource requirements
fit on a single V100-16GB GPU (see Table 1). The first job
in each pair is high-priority while the second is best-effort.
Each job issues one request at a time in a closed loop. The
stacked bar plot shows each job’s throughput on a shared
GPU with various techniques, compared to the total through-
put when jobs execute on dedicated GPUs (denoted as Ideal).
Temporal sharing, MPS, Streams, and Tick-Tock (proposed
for training job collocation) achieve far below ideal aggre-
gate throughput. REEF achieves high performance for the
high-priority job, but barely executes the best-effort job.

To help close this gap, we propose Orion1, a fine-grained,
interference-aware GPU scheduler. Orion maintains perfor-
mance for a high-priority workload while collocating best-
effort jobs to maximize GPU utilization and save costs. Orion
is a software system that intercepts GPU kernel launches

1Orion is available at https://github.com/eth-easl/orion

Figure 2. Existing GPU collocation techniques leave perfor-
mance on the table. Bold bars show high-priority DNN job
throughput, faint bars show best-effort job throughput.

from client applications sharing a GPU device. Orion sched-
ules requests based on client job priority, operator size, and
whether an operator is compute or memory bound. By sched-
uling at the granularity of individual operations, Orion spa-
tially shares the GPU to make best use of GPU compute units
and memory bandwidth that may be underutilized by the
high-priority job for only 10-1000s of 𝜇s.
Orion improves GPU resource efficiency (and cost) for a

variety of DNN collocation use cases, with minimal impact
on high-priority job performance. When collocating latency-
sensitive inference with best-effort offline inference, Orion
improves aggregate throughput by up to 7.3× compared to
dedicated GPU execution, while maintaining p99 latency
within 15% on average for the high-priority job. When collo-
cating a latency-sensitive inference job with a training job,
Orion maintains p99 inference latency within 14% on aver-
age while increasing the GPU’s aggregate throughput up to
2.3×. Orion reduces cost by 1.29× when collocating training
jobs while ensuring the high-priority training job maintains
throughput within 16% of its dedicated GPU throughput.

2 GPU Architecture Background
Figure 3 shows a typical GPU architecture. Without loss of
generality, we use NVIDIA hardware and CUDA program-
ming terminology [2, 13]. A GPU consists of multiple Stream-
ing Multiprocessors (SMs), each containing various types of
compute cores (e.g., fp64 units, tensor cores), register files,
and L1 cache. The GPU also has shared caches and memory.

GPUprogramming abstractions.Developers define their
DNN application as a collection of operations using high-
level APIs in a framework like PyTorch [79] or TensorFlow [29].
The application framework compiles these operations (e.g.,
convolution, batch normalization) for the target GPU ar-
chitecture and submits operations as CUDA computation
kernels to the GPU, along with CUDA memory management
operations that allocate, initialize, and free GPU memory.

1076

https://github.com/eth-easl/orion

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

Memory

L2 Cache

SM SM SM SM SM

CPU

Stream jStream i

SM SM SM SM SM

GPU Work queue i Work queue j

blocki1a blocki1b

blocki1c blockj1a

blockj1b

App i App j

kernelj2
kernelj1kerneli1

FP64

FP64

INT

INT

Tensor Core

Tensor Core

Register Files
L1 cache

Warp schedulers

FP64 INT Tensor Core… … …

… … …

Figure 3. Simplified GPU architecture.

Submitting a kernel involves specifying its resource require-
ments (e.g., the number of thread blocks2, registers, threads
per block, and shared memory required). The application
associates each kernel launch and memory operation to a
particular CUDA stream. A stream is
a sequence of operations that are guaranteed to execute

in order. Each application process has its own default stream.
To increase concurrency, applications can create additional
streams (optionally with different priorities [15]) and submit
kernels across streams.

GPU hardware scheduling. As shown in Figure 3, the
GPU buffers each CUDA stream’s kernels in a separate work
queue on the device. Most GPUs, in particular NVIDIA GPUs,
do not allow users to preempt kernels after submission [50].
The GPU hardware scheduler dispatches thread blocks from
kernels in each work queue based on stream priority. The
scheduler assigns a thread block to an SM when the thread
block’s data dependencies are met and an SM with sufficient
resources is available. Users cannot control which SM will
execute a particular thread block, though researchers have
reverse-engineered hardware scheduling policies for popular
GPU architectures [30, 45, 46]. When a thread block is as-
signed to an SM, the SM will schedule and execute all thread
warps from that block. SMs can execute multiple warps con-
currently, from thread blocks that may belong to different
kernels and streams [2]. However, if any warp saturates a
resource on the SM (e.g. the number of registers), the SM’s
warp scheduler will wait until no resource is saturated before
scheduling any additional warps, even if some resources on
the SM are available (e.g. compute units or shared memory).

GPU utilization metrics. The most common GPU uti-
lization metric is SM utilization, which is the percentage of
2A thread block is a group of threads, which will execute on the same SM
and can communicate via shared memory [4]. A thread block typically
consists of multiple warps, which are groups of threads that execute the
same instruction. There are typically 32 threads per warp.

SMs that are busy (i.e., executing at least one warp). SM
utilization does not fully capture GPU utilization as an SM
is considered busy even if only a small part of its resources
are in use. Compute throughput utilization is the utilization
of SM compute units, such as FP32, FP64, FP16, FMA units,
tensor cores, etc. [9]. Using the NVIDIA Nsight Compute
tool [26], we can get information about the utilization of
each individual component 3. The reported utilization is the
maximum of all distinct components utilizations. Memory
capacity utilization is the percentage of memory allocated
on the GPU. Memory bandwidth utilization is the percentage
of peak GPU internal memory bandwidth consumed.

3 Understanding DNN GPU Utilization
Although DNN applications typically have high compute and
memory intensity [86], they often underutilize GPUs [98, 99,
102, 103]. Prior work has identified reasons for low GPU
utilization and proposed solutions. Input data preprocess-
ing bottlenecks on host CPUs can leave GPUs idle while
waiting to ingest data [58, 62, 72, 73]. We can alleviate in-
put stalls by disaggregating and scaling out data prepro-
cessing [34, 48, 91, 108]. Communication between nodes can
limit distributed training throughput and idle GPUs [80, 107].
Aggressive pipelining [53, 74], gradient compression [68],
asynchronous updates [40, 44], in-network aggregation [85]
help hide communication stalls. Gang scheduling in multi-
GPU clusters can leave some GPUs idle while other GPUs for
a job become available [103]. Recent DNN systems address
this issue with elastic GPU allocation [33, 66, 76, 82].
However, even after eliminating input data, communica-

tion, and gang-scheduling bottlenecks, DNN jobs still struggle
to keep GPUs fully utilized, especially when modest batch
sizes are used. Real-time inference jobs, such as computer-
vision tasks in self-driving cars [42, 77], speech recognition
services [42] and online recommendation systems [16] usu-
ally employ small batch sizes, in order to avoid SLO viola-
tions [41, 49, 50, 75].
Throughput-oriented training jobs use large batch sizes,

but maximizing batch sizes to reach GPU memory limits is
not always beneficial [71, 78, 95]. Increasing the batch size
beyond a certain point can degrade the statistical efficiency
of training [56, 57, 61, 70, 82, 88], and have diminishing re-
turns in the training procedure, increasing the time needed
to reach a target accuracy [78], and decreasing the model’s
validation performance [82]. Shallue et al. [88] studied the
effects of increasing the batch size in a variety of models
and tasks. They observed that, beyond a certain point, fur-
ther increase in the batch size does not lead to reductions in
training time. Researchers have proposed adapting the learn-
ing rate as the batch sizes increase [47]. Nevertheless, these

3According to the NVIDIANsight Compute tool, X% utilization of a compute
unit (e.g. FP16 unit), means that the unit was active for X% of the time
(similar to CPU utilization).

1077

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

Model Workload Batch size Avg SMs busy (%) Compute
Throughput(%)

Memory
Bandwidth(%)

Memory
Capacity(%)

ResNet50 Inference 4 24 30 22 9
MobileNetV2 Inference 4 6 18 21 7
ResNet101 Inference 4 29 24 37 9
BERT-large Inference 2 95 72 28 14
Transformer Inference 4 61 52 29 10
ResNet50 Training 32 81 48 45 32

MobileNetV2 Training 64 71 34 49 43
ResNet101 Training 32 85 50 43 39
BERT-basic Training 8 61 44 21 38
Transformer Training 8 49.5 29 30 53

Table 1. Average GPU utilization for popular DNN workloads on a V100-16GB NVIDIA GPU. SM utilization is from the Nsight
Systems tool.Wemeasure the compute throughput andmemory bandwidth utilization of each kernel using sm_throughput and
gpu_compute_memory_throughput in Nsight Compute [8]. We monitor memory capacity with the nvidia-smi command.

techniques are model-specific and require significant tun-
ing and expertise [32, 57, 95]. DeepPool [78] demonstrates
convergence issues in distributed setups with large global
batch sizes, when per-GPU batch size remains constant while
increasing the number of GPUs. Hence, they recommend
strong scaling: when scaling out training to more GPUs for
large models, the optimal per-GPU batch size decreases. Sim-
ilarly, Crossbow [57] exhibits the best time-to-accuracy with
smaller batch sizes. These trends leave memory capacity and
GPU resources underutilized.
Recently, Large Language Models (LLMs) have become

very prevalent, due to their high performance in a diverse
spectrum of tasks. Since LLMs have exceptionally large mem-
ory capacity requirements (even with small batch sizes [60]),
the opportunities to share GPUs among LLM workloads are
more limited. Hence, LLMs are not our target workloads for
GPU sharing. Nevertheless, in Section 7, we discuss GPU
sharing opportunities for LLMs as the sequential token gen-
eration phase of LLM inference is memory-bound and un-
derutilizes the GPU’s compute throughput and SMs [55, 60].

3.1 Profiling the GPU utilization of DNN jobs
We profile a variety of popular DNN workloads execut-
ing on an NVIDIA V100-16GB GPU without stalls. We use
batch sizes for each workload based on configurations com-
monly used in prior work for the same or similar GPU hard-
ware [21, 23, 51, 54, 84, 97]. We use the Nsight Compute tool
to profile the compute and memory utilization of individual
kernels, and get a kernel execution trace using the Nsight
Systems tool. By aligning each kernel’s start and end points
with resource profile information, we generate resource uti-
lization traces for the entire workload (e.g. Figure 1). We
then compute the average utilization across the whole work-
load. Across all workloads, we observe that GPU compute
throughput and memory bandwidth utilization are bursty,
as shown in the example of Figure 1, and low on average,

Figure 4. Compute vs. memory intensive kernels for model
inference request (left) and model training minibatch (right).

as summarized in Table 1. Compute throughput utilization
ranges from 18% to 72%, even though up to 95% of SMs can
be “busy” on average (an SM is busy if it executes at least one
warp). Furthermore, workloads consume only 21-49% of GPU
memory bandwidth and 7-53% of GPU memory capacity.

When analyzing DNN kernel execution traces, we observe
that GPU compute utilization spikes often occur at differ-
ent points in time than memory utilization spikes. DNN
workloads consist of many kernels with different resource
requirements. Figure 4 classifies each workload’s kernels as
compute-intensive (performance is bounded by GPU compute
throughput) or memory-intensive (performance is bounded
by GPU memory bandwidth).4 Kernels typically execute for
10s to 100s of 𝜇s (for inference) or 100s to 1000s of 𝜇s (for
training). As kernels from an individual DNN job execute
sequentially due to data dependencies, when a kernel satu-
rates GPU compute or memory bandwidth, it often leaves
other GPU resources idle for short periods of time.
4Some kernels are labeled unknown because the NSight Compute tool does
not provide a Roofline analysis for all kernels.

1078

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

Kernel pairs Sequential Collocated Speedup
Conv2d-Conv2d 2.59 ms 2.63 ms 0.98×
BN2d-BN2d 1.78 ms 1.65 ms 1.08×
Conv2d-BN2d 2.15 ms 1.52 ms 1.41×

Table 2. Toy experiment collocating Conv2d (compute-
intensive) with BN2d (memory-intensive) kernels. Colloca-
tion leads to significant speedup over sequential execution
when kernels have opposite resource intensity.

3.2 Exploring GPU kernel collocation
A promising way to improve GPU utilization is to collocate
kernels with opposite resource intensity. While overlapping
kernel execution within a DNN job is limited due to data de-
pendencies, we can collocate kernels from different jobs. We
conduct a toy experiment with a compute-intensive kernel
Conv2d (a 2D convolution) and a memory-intensive kernel
BN2d (a 2D batch normalization), commonly used in vision
models. With a batch size of 32, Conv2d executes in 1.35 ms,
consuming 100% of SMs on a dedicated V100 GPU. BN2d
executes in 0.93 ms, consuming 40% of SMs. Table 2 shows
the execution time when executing the kernels sequentially
(on a single CUDA stream) and concurrently (on separate
CUDA streams). Collocating two Conv2d kernels is not ben-
eficial, as the two kernels compete for GPU SMs, ultimately
running sequentially. Collocating two BN2d kernels leads to
a small speedup compared to sequential execution. Despite
each kernel only consuming 40% of the GPU’s SMs, their
memory-intensive nature causes significant interference. In
contrast, collocating a Conv2d with a BN2d kernel reduces
aggregate latency by 1.41× compared to sequential execu-
tion, since they have different resource demands. Conv2d
consumes 89% and 20% of GPU compute throughput and
memory bandwidth, respectively, while BN2d has 14% com-
pute throughput and 80% memory bandwidth utilization.

Takeaway: Individual DNN jobs consist of kernels with
various compute and memory requirements, as shown in
Figure 4. Since kernels need to execute sequentially, due to
data dependencies, they often underutilize GPU’s compute
and memory bandwidth. Sharing GPUs between DNN jobs
is necessary to maximize utilization. Our toy experiment,
described in Table 2, has shown that spatial collocation is
most effective for kernels with opposite compute vs. mem-
ory intensity. Since DNN jobs consist of both compute- and
memory-intensive kernels (Figure 4), colocating opposite-
profile kernels from different DNN jobs would help increase
utilization, while minimizing interference.

4 Related Work on GPU Sharing
We summarize current approaches for GPU sharing and dis-
cusswhy they are not sufficiently fine-grained or interference-
aware to make use of GPU resources that a high-priority
DNN job may underutilize for ∼100s of 𝜇s at a time.

Temporal sharing. Temporal sharing techniques time-
slice the GPU by context switching between multiple jobs to
improve utilization. Prior systems focus on multiplexing mul-
tiple DNN models per GPU whose collective state does not
fit in GPU memory. Hence, the main challenge these systems
address is efficiently swapping state as requests for particu-
lar models arrive. Gandiva [102] uses a suspend-and-restart
mechanism to transfer state between host and GPU memory
during context switches. Salus [104] reduces context switch-
ing by optimizing which state should remain on the GPU.
Clockwork [49] serves thousands of DNNs per GPU with
predictable latency by determining upfront whether the GPU
can meet the request deadline based on the expected time
to load/unload DNN state and run inference. Antman [103]
dynamically adjusts job memory allocations to enable more
efficient cluster-level job collocation per GPU for tempo-
ral sharing. Transparent GPU Sharing (TGS) [100] enables
application-agnostic temporal GPU sharing for container-
ized workloads. However, these systems still execute one job
at a time. As discussed in §3, this underutilizes GPUs as an
individual DNN job’s kernels often do not consume all GPU
compute units and memory. The goal of our fine-grained,
interference-aware sharing is to fill spare GPU capacity for
such jobs. Our work complements the above approaches,
which efficiently swap state to fit more models per GPU.

Spatial sharing. Spatial sharing mechanisms enable jobs
to simultaneously use different regions of a GPU [106]. NVIDIA
Multi-Instance GPU (MIG) [12] offers coarse-grained GPU
partitioning, but lacks the agility to opportunistically har-
vest resources that are underutilized for short time slots.
MIG partitions take 100s of ms to create and models take
10s of seconds to resume execution from checkpoints after a
new partition is created [65]. NVIDIA Multi-Process Service
(MPS) [25] enables multiple processes to run in parallel on
a GPU, but leads to high interference, as processes freely
share caches, compute, and memory resources (see Figure 2).
REEF [50] schedules kernels at a fine granularity based on
their size and priority, and is designed to collocate high and
low priority inference jobs. Zico [67] and Tick-Tock [94]
collocate training jobs on GPUs by scheduling forward and
backward passes to minimize total memory consumption.
However, none of these approaches co-schedule kernels

based on their compute and memory profiles, which we
showed in §3 is critical to minimize interference while maxi-
mizing GPU utilization.

5 Orion
We propose Orion, a fine-grained, interference-aware GPU
scheduler. Orion’s goal is to maintain high performance for
a high-priority job while using spare GPU resources for best-
effort jobs. Orion is transparent to end users and requires no
API changes. We implement Orion as a dynamically linked

1079

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

library that controls GPU operations submitted by an ap-
plication framework (e.g., PyTorch). As shown in Figure 5,
Orion intercepts GPU operations submitted by each client
and buffers the operations in per-client software queues.
Operations include GPU kernels (e.g., convolution, batch
normalization) and memory management operations (e.g.,
memory allocations, memory copies). Orion submits opera-
tions from per-client software queues to the GPU hardware
using the scheduling policy described in §5.1, leveraging
kernel characteristics collected during an offline workload
profiling phase, described in §5.2. Orion operates on the level
of a single GPU device. In distributed DNN job deployments,
a separate instance of Orion runs per GPU device.

5.1 Orion Scheduler
We describe Orion’s GPU kernel scheduling policy (§5.1.1)
along with the mechanisms we use to implement the schedul-
ing policy (§5.1.2) and manage GPUmemory (§5.1.3). Orion’s
policy is developed and evaluated with closed-source GPUs
in mind, which do not allow users to control the physical
placement of the kernels in the SMs, or preempt kernels after
submission.

5.1.1 GPU Kernel Scheduling Policy. The pseudo code
in Listing 1 shows Orion’s scheduling policy, assuming for
simplicity that two clients share the GPU: a high prior-
ity client (client_hp) and a best-effort client (client_be).
Orion generalizes to an arbitrary number of best-effort clients
by serving clients round-robin.
Orion executes the run_scheduler method to continu-

ously poll each client’s software queue (lines 4-6). If a kernel
from the high-priority job is present (line 7), Orion submits
it directly to the GPU hardware on a dedicated GPU stream
(line 8). The GPU hardware executes kernels submitted to the
same stream sequentially, thus respecting data dependencies.

If a kernel from a best-effort job is present (line 10), Orion
executes schedule_be() to decide if it is currently suitable
to launch the kernel on the GPU. In order to reduce interfer-
ence between the high-priority and best-effort tasks, Orion
takes into account the compute and memory profiles of the
high-priority and best-effort kernels, as well as the Stream-
ing Multiprocessor demands and duration of the best-effort
kernels. A best-effort kernel is suitable to schedule if there is
no high-priority task ongoing. The best-effort kernel is also
suitable to schedule if it is sufficiently small (in terms of the
number of SMs it requires) and if the kernel has an opposite
resource profile (compute vs. memory bound) compared to
the high-priority kernel (lines 27-29). Orion considers the
number of SMs (in addition to the compute/memory resource
profiles) since large best-effort kernels might occupy all the
SMs of the GPU and starve high-priority kernels. By default,
we set SM_THRESHOLD to the total number of SMs on the GPU
device, however, this parameter can also be tuned dynami-
cally to increase utilization while monitoring high-priority

Model
profiles Scheduler

OFFLINE ONLINE
High priority
Client 1

Best effort
Client 2

Best effort
Client 3

Best effort
Client 4 PyTorch

Orion
(CUDA/C++)

C C

C M

M
M M

GPU

DNN
workload

Profiler

Figure 5. Orion system architecture.

job performance. For example, when the high-priority job
is a throughput-oriented job, such as training, we find that
SM_THRESHOLD can be increased for more aggressive collo-
cation. Tuning is done by monitoring the throughput of the
high-priority job and adjusting the SM_THRESHOLD with bi-
nary search, using the maximum number of SMs needed
by any kernel of the best-effort job as the max value and
zero as the min value in the search. Kernels with unknown
resource profiles tend to be very short-running, hence Orion
optimistically allows these kernels to execute with compute
or memory-bound kernels.

To minimize interference despite the asynchronous nature
of GPU kernel execution and the lack of kernel preemption
software available to the users, Orion checks one additional
condition before submitting a best-effort kernel to the GPU
hardware (line 12). Orion keeps track of best-effort kernels
that are still outstanding on the GPU (i.e., submitted but not
yet completed) and their expected duration, obtained from
an initial profiling phase (described in §5.2). Orion will only
launch the best-effort kernel if the expected total duration
of the outstanding best-effort kernels is not already close
to the high-priority job request latency, if the high-priority
job is an inference workload, or iteration duration, if the
high-priority job is a training workload. Throttling long-
running sequences of best-effort kernels is necessary since
as soon as they start executing on the GPU, they cannot
be preempted even if high-priority kernels get submitted.
DUR_THRESHOLD is a tunable percentage of the high-priority
job request latency. We explore Orion’s performance sensi-
tivity to DUR_THRESHOLD (see §6.4) and empirically set the
default percentage to 2.5%.

Finally, in line 19, Orion submits the best-effort kernel on a
separate GPU stream and keeps track of the outstanding best-
effort kernel durations. In the case of multiple best-effort
clients, Orion uses a separate GPU stream for each client.

5.1.2 Scheduling ImplementationMechanisms. Orion
uses two key mechanisms to implement the policy.

GPU stream priorities. Closed-source GPUs, such as
NVIDIA GPUs, do not expose the hardware scheduler to

1080

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

1 def run_scheduler(client_q_hp , client_q_be):

2 be_duration = 0, be_submitted = Event()

3 hp_task_running = False

4 while True:

5 op_hp = client_q_hp.pop()

6 op_be = client_q_be.peek()

7 if (op_hp != None):

8 launch_kernel(op_hp , stream_hp)

9 hp_task_running = True

10 if (op_be != None):

11 schedule = schedule_be(op_hp , op_be)

12 if (be_duration > DUR_THRESHOLD):

13 if (be_submitted.finished ()):

14 be_duration = 0

15 else:

16 schedule = False

17 if (schedule):

18 client_q_be.pop()

19 launch_kernel(op_be , stream_be)

20 be_duration += op_be.duration

21 be_submitted.record(stream_be)

22

23 def schedule_be(op_hp , op_be):

24 schedule = False

25 if (! hp_task_running):

26 schedule = True

27 else if (op_be.sm_needed < SM_THRESHOLD

28 and have_different_profiles(op_hp ,op_lp)):

29 schedule = True

30 return schedule

Listing 1. Orion scheduling algorithm assuming one high
priority and one best-effort client.

software. However, we can influence the behavior of the
hardware scheduler by using streams priorities [15]. The
GPU hardware prioritizes scheduling an incoming kernel
from a high-priority stream, even when low-priority kernels
are pending (i.e. not executing yet). However, there is no
guarantee that thread blocks from a high-priority stream
will preempt the execution of a kernel running on a stream
with a lower priority [7]. The lack of preemption is why we
throttle best-effort kernels with the DUR_THRESHOLD check.
CUDA events. CUDA Events [18] provide a way to moni-

tor the progress of each stream in the GPUwithout expensive
stream synchronization operations, which would block the
CPU scheduler thread. Upon submitting a best-effort kernel,
Orion records its submission in a CUDA event (line 21 in List-
ing 1). The GPU sets the event status as "finished" after the
submitted kernel completes. Orion uses cudaEventQuery to
query the status of the best-effort stream without blocking.

5.1.3 Memory Management. Orion uses the policy in
§5.1.1 to schedule GPU kernels on SMunits. In contrast, mem-
ory allocation and memory copy operations consume only

CPU-GPU PCIe bandwidth. In our current design, Orion di-
rectly submits memory operations to the GPU.We plan to ex-
tend our current implementation with techniques that man-
age PCIe bandwidth interference [39]. Orion could schedule
each cudaMemcpy operation by considering its PCIe band-
width requirements and current bus bandwidth utilization.

Orion maintains application semantics for all memory
operations. For blocking operations, like cudaMemcpy and
cudaMemset, Orion blocks until the operation completes on
the GPU. For asynchronous memory operations, such as
cudaMemcpyAsync, clients continue executing after Orion
intercepts the operation. For memory operations that cause
device synchronization (e.g., cudaMalloc, cudaFree), Orion
synchronizes all clients to avoid invalid memory accesses.
The current implementation of Orion assumes that the

cluster manager chooses to collocate jobs that fit in GPU
memory, as assumed in other works like REEF [50]. Orion
is orthogonal to and hence can be combined out-of-the-
box with existing mechanisms for GPU memory swapping,
such as making use of the NVIDIA Unified Memory mech-
anism [5], or more sophisticated swapping mechanisms as
the ones proposed in Salus [104], PipeSwitch [35], Clock-
Work [49], and vLLM [60]. We intend to integrate layer-by-
layer offloading [83] to Orion. This involves maintaining the
high-priority task on the GPU while gradually swapping
layers of best-effort job(s) in and out of the GPU if the whole
model(s) do not fit in the remaining GPU memory. As GPU-
CPU interconnects are becoming faster and faster [24], we
expect that swapping will have lower overhead.

5.2 Workload Profiling
Orion’s scheduling policy requires information about the
compute vs. memory intensity of each kernel, the expected
execution time and SM requirements of each best-effort job
kernel, and the request latency of high-priority jobs. Be-
fore execution, Orion profiles each DNN workload offline
and generates a file containing profile information for each
kernel in the model. The Orion scheduler loads the profil-
ing information in an in-memory lookup table, indexed by
unique kernel ID.

Kernel latency and resource profiles. Orion uses the
Night Compute [26] and Nsight Systems [27] tools from
NVIDIA to collect the compute throughput, memory through-
put, and execution time of each kernel. We use the roofline
analysis in Nsight Compute, which classifies a kernel as
compute-bound or memory-bound. Since the tool does not
include roofline analysis for all kernels, we further classify a
kernel as compute or memory bound if its compute through-
put or memory bandwidth utilization is over 60%, respec-
tively, as recommended by the Nsight Compute tool. If both
compute throughput and memory bandwidth utilization are
below 60% and roofline analysis is not available for the ker-
nel, we classify its resource profile as unknown. In practice,

1081

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

we find that the unknown kernels mostly occur in the up-
date phase of a training iteration, are very small, and intro-
duce negligible interference when collocated with other jobs.
Thus, Orion allows best-effort kernels of unknown resource
profiles to be collocated with any high-priority kernel.

Kernel SM requirements. For each kernel in the best-
effort jobs, Orion uses the Nsight Compute tool to get the
number of blocks, the number of threads per block, the num-
ber of registers per thread, and the amount of shared memory
that the kernel requires. For each kernel 𝑘 , we first determine
blocks_per_sm𝑘 , which is the number of blocks that can be
supported per SM on the target GPU architecture for that
kernel. blocks_per_sm𝑘 can be limited by the number of
threads, the number of registers, or the amount of shared
memory available per SM that the kernel 𝑘 requires. We
then calculate the number of SMs required per kernel as:
sm_needed𝑘 = ceil(num_blocks𝑘 /blocks_per_sm𝑘).
Request latency. To determine the DUR_THRESHOLD pa-

rameter, whichOrion uses to throttle best-effort kernel launches
based on their duration relative to high-priority request exe-
cution, Orion must also profile high-priority request latency,
when the job is running alone in a dedicated GPU. For in-
ference jobs, a request refers to a single batch of inference
requests. For training jobs, a request refers to a single train-
ing iteration.

5.3 Integration in DNN framework
Orion’s scheduling policy is agnostic to the application frame-
work. Orion is dynamically linked to the DNN framework
and is transparent to end users.

PyTorch Prototype. For our prototype, we implement
Orion in PyTorch [79] in 3000 lines of C++/CUDA code. In
native PyTorch, client applications launch kernels using the
CUDA runtime API [14] and libraries like CUBLAS [19] and
CUDNN [20], which provide high-performance implementa-
tions for common DNN operations. Orion intercepts CUDA
kernel launches by overriding them with wrapper functions,
which submit the necessary information (kernel identifier
and arguments) to the per-client software queues. Orion cur-
rently implements wrappers for memory management op-
erations (cudaMalloc, cudaMemcpy, cudaMemset, cudaFree,
etc) and kernel launch operations (cudaLaunchKernel) from
the CUDA runtime API, as well as CUDNN and CUBLAS
functions for convolution, batch normalization, and matrix-
matrix multiplication. These wrappers are sufficient to sup-
port all the DNN workloads in our evaluation, though more
can be added. Intercepting operations and managing the per-
client software queues is lightweight. The overhead of using
Orion’s wrappers is less than 1%, as we show in §6.5.
In our current prototype and evaluation, client applica-

tions and the Orion scheduler run as different threads of
the same process, enabling in-process memory sharing and
fast communication. Orion can also be used for applications
executing as different processes. In this case, Orion executes

as a separate process and clients submit kernels to queues in
shared memory regions. This requires the GPU to support
concurrent access frommultiple processes, such as NVIDIA’s
MPS feature [25].

6 Evaluation
We evaluate Orion to answer the following key questions:

• How does Orion’s performance compare to other GPU
sharing approaches?

• What are the cost and GPU utilization benefits of using
Orion compared to dedicating GPUs for each job?

• Which aspects of Orion’s scheduling policy contribute
most to performance benefits?

• How does Orion generalize to a newGPU architecture?
• How does Orion scale to multiple best-effort clients?
• What are the overheads of Orion’s kernel profiling and
kernel launch interception mechanisms?

6.1 Methodology
Experiment testbed. We evaluate Orion on an NVIDIA
V100-16GB GPU using a Google Cloud n1-standard-8 VM,
which has 8 vCPU cores and 30 GB of DRAM. We use Py-
Torch 1.12 with Python 3.9 and CUDA 10.2. We also show
that Orion generalizes to other GPU architectures by evaluat-
ing Orion on an A100-40GB GPU using an a2-highgpu-1g
VM, with CUDA 11.3. For all experiments, we ensure jobs
execute with no data preprocessing or communication bot-
tlenecks. Hence, we evaluate Orion’s ability to improve GPU
utilization while minimizing interference in the most chal-
lenging setting, where each individual job maximizes its own
GPU utilization. We repeat each experiment three times.

Workloads.We consider three common GPU sharing use
cases. First, we collocate a high-priority, latency-sensitive
inference job with a best-effort training job (inf-train). Next,
we collocate high-priority and best-effort training (train-
train). Finally, we collocate a high-priority, latency-sensitive
inference job with best-effort offline inference jobs (inf-inf).

For each use case, we consider popular DNN models from
computer vision and natural language processing (NLP) do-
mains. ResNet50, ResNet101 [51] and MobileNet-v2 [84] are
representative vision models. We use their TorchVision im-
plementations [28]. BERT [43] and Transformer [92] are rep-
resentative NLP models. We use the implementations from
NVIDIA [22]. We use full-precision for both training and in-
ference. Table 1 summarizes the batch size for each workload.
We match batch sizes to those used in prior works on the
same or comparable GPU platforms [21, 23, 51, 54, 84, 97].

We consider uniform and Poisson request arrival distribu-
tions for inference jobs. A uniform distribution is representa-
tive of application domains such as autonomous driving (e.g.,
where cameras detect obstacles [36, 37]), whereas Poisson
arrivals are representative of event-driven, real-time DNN
applications (e.g., speech recognition [50, 52]). We select

1082

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

Inf-Inf Inf-Train
Model Uniform Poisson Poisson

ResNet50 80 50 15
MobileNet-v2 100 65 40
ResNet101 40 25 9
BERT 8 5 4

Transformer 20 12 8
Table 3. Requests per second (RPS) for DNN inference jobs.

the mean request arrival rates (shown in Table 3) to match
the mean invocation request rates of the top 20 most fre-
quently executed functions in the Microsoft Azure Functions
trace [87], as used in other works [49, 105] to stress-test
GPU collocation scenarios. For the vision models, we also
use an inference trace collected from a real object detection
model deployment in the Apollo autonomous driving sys-
tem [36]. This inference trace is from the DISB inference
serving benchmark [17], first used to evaluate REEF [50]. For
experiments with the Apollo trace, we use the trace’s invo-
cation timestamps for the high-priority inference job and as-
sume uniform request inter-arrival for collocated best-effort
inference jobs. Meanwhile, training jobs submit requests in
a closed loop.

Baselines.We compare Orion to temporal sharing, which
time-slices the GPU by executing one job’s request at a time,
while prioritizing the high-priority job. We also compare
Orion to NVIDIA MPS [25] and GPU Streams [3] spatial
sharing mechanisms. GPU Streams allow multiple client ap-
plications to share a GPU, as long as they are part of the
same process. Hence, for this baseline, we run each DNN
application client as a separate thread, which submits re-
quests to a separate CUDA stream. We assign a high-priority
stream to the high-priority job, and a default-priority stream
to each of the best-effort jobs. MPS is a feature in NVIDIA
GPUs with compute capability 3.5 or higher, which enables
multiple processes to spatially share the GPU.
We also compare to the state-of-the-art REEF [50] GPU

sharing policy. REEF is originally developed for AMD GPUs,
which allows users to preempt kernels during execution. For
NVIDIA GPUs, the authors proposed a restricted version
of kernel preemption, REEF-N, which allows high-priority
kernels to bypass best-effort kernels in software queues be-
fore submission to GPU. Since only the AMD GPU version
of REEF is currently open source, we implement REEF-N
and the kernel selection rules from the original paper, which
schedule kernels based on their size (number of SMs) and
expected latency. We use a software queue size of 12 kernels,
based on discussions with the REEF authors. While REEF
was primarily designed to collocate inference jobs (since
training jobs include non-idempotent kernels that update
model state), REEF-N is safe to use for training jobs as kernel

execution is never preempted. Hence, we compare Orion to
the REEF-N policy for all collocation use cases.

For training job collocation (train-train), we compareOrion
to Tick-Tock [94], which offsets the forward and backward
passes of trainingminibatch iterations to minimize aggregate
memory usage and reduce interference. Zico [67] also imple-
ments this approach. Since neither system has an available
open-source implementation for PyTorch, we implement the
approach based on the papers.
As a performance upper bound, we measure the latency

and throughput of each workload on a dedicated GPU. The
Ideal baseline has latency equal to the high-priority job’s
latency with no collocation and throughput equal to the
sum of high-priority’s and best-effort jobs’ dedicated GPU
throughput. This baseline is a lower bound for latency and
an upper bound for throughput.

6.2 Performance and cost benefits
We evaluate inf-train, train-train, and inf-inf collocation use
cases with two DNN clients at a time: one high-priority and
one best-effort. For the high-priority inference job, we report
the p99 latency. We observe similar trends for all baselines
for the p50 and p95 latency, so we omit the respective plots
for brevity.

6.2.1 Inference-Training. Figure 6 shows the p99 latency
and aggregate throughput of a high-priority inference job
with Apollo trace request arrivals, collocated with a best-
effort training job. Each bar represents the performance of
a high-priority inference workload (labeled on the x-axis),
averaged across experiments that collocate each one of the
DNN training jobs from Table 3. The standard deviation bars
show how inference latency varies across the five different
collocated training jobs. Figure 7 shows results for a sim-
ilar inf-train setup, but assuming Poisson arrivals for the
high-priority inference job.
Temporal sharing leads to high tail inference latency, de-

spite prioritizing inference requests. An incoming inference
request must wait for any ongoing training iteration to com-
plete before it starts executing, resulting in high queuing
delays. Spatial sharing mechanisms improve performance
by parallelizing request execution across multiple streams.
However, GPU Streams and MPS mechanisms only maxi-
mize aggregate throughput and do not prioritize the latency-
sensitive inference job, leading to high tail latency. MPS
generally achieves lower latency than Streams, since multi-
processing is more efficient than multi-threading in Python
applications. Clients in the Streams baseline run as different
threads, hence they contend for the Python global interpreter
lock [10]. The REEF policy is also unable to maintain low p99
inference latency, as it lacks interference-aware scheduling
and does not sufficiently throttle the best-effort training job.
On average, REEF’s inference latency is 3.44× higher than

1083

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

(a) p99 latency of inference job averaged across collocation experi-
ments with each model training job.

(b) The bold bar is inference throughput (for high-priority model on
x-axis). The faint bar is the average best-effort training throughput.

Figure 6. Inference-Training (Apollo trace): inference latency and total throughput

(a) p99 latency of inference job averaged across collocation experi-
ments with each model training job.

(b) The bold bar is inference throughput (for high-priority model on
x-axis). The faint bar is the average best-effort training throughput.

Figure 7. Inference-Training (Poisson): inference latency and total throughput.

ideal for the Apollo trace experiments and 2.5× higher than
ideal for the Poisson arrival experiments.
In contrast, Orion keeps p99 latency of the high-priority

inference job within 14% of the ideal latency, which is 2.3-
3× lower than REEF, on average. Orion also achieves low
variance in inference latency across collocations with dif-
ferent models. At the same time, Orion increases aggregate
throughput by up to 1.3× and 2.3× compared to inference
throughput on a dedicated GPU, for the Apollo and Poisson
experiments, respectively.

Table 4 shows the cost benefits of using Orion to collocate
a Poisson arrival inference job with different training jobs
on a single GPU, compared to dedicating separate GPUs for
each job. We calculate the cost savings as:

𝑐𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 =
2 𝐺𝑃𝑈 · 𝐽𝐶𝑇𝑑𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑑
1 𝐺𝑃𝑈 · 𝐽𝐶𝑇𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

=
2 ·𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑑𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑑

where 𝐽𝐶𝑇 is the job completion time. Dedicated and
collocated scenarios use 2 GPUs and 1 GPU, respectively.
Throughput is the inverse of job completion time. Overall,
Orion achieves 1.26× to 1.49× cost savings.
We also measure Orion’s impact on GPU utilization. Fig-

ure 8a plots V100 GPU Compute Throughput utilization over
time for a ResNet50 inference job running alone, while Fig-
ure 8b shows utilization when using Orion to collocate the
inference job with a best-effort ResNet50 training job. The
inference job submits requests with a uniform distribution
at 100 requests per second. Orion fills in the fine-grained
low-utilization periods of the inference job, increasing the av-
erage Compute Throughput utilization from 7% to 36%. The
remaining periods of low utilization in Figure 8b correspond
to times when memory copy operations execute from the
host CPU to GPU. The GPU hardware cannot schedule ker-
nels during memory copies [1]. Similarily, Figure 9a and 9b

1084

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

(a) ResNet50 Inference alone

(b) ResNet50 Inference + ResNet50 Training

Figure 8. Inference job Compute throughput utilization on
a dedicated GPU vs. collocated with training.

Model Dedicated
Training
iterations/sec

Collocated
Training
iterations/sec

Cost
Savings

ResNet50 10.3 7.45 1.45×
MobileNetV2 12.5 8.78 1.4×
ResNet101 6.3 4.7 1.49×
BERT 4.91 3.1 1.26×
Transformer 6 3.9 1.3×

Table 4. Training throughput on a dedicated GPU for each
model vs. its average training throughput when collocated
with inference jobs using Orion. Cost savings come from
collocating on a single GPU vs. using 2 separate GPUs.

plot the GPU memory bandwidth utilization of the inference
job running alone and colocated with training, respectively.
In that case, Orion improves Memory Bandwidth Utilization
from 10% to 47%. Finally, Orion improves SM utilization from
11% to 49%.

6.2.2 Training-Training. Figure 10 shows average aggre-
gate throughput when collocating high-priority and best-
effort training jobs. With MPS and Streams, high-priority job
throughput is, on average, 1.7× less than the job’s through-
put on a dedicated GPU, due to interference. MPS achieves
up to 6% higher throughput than Streams due to process-
based parallelism. Tick-Tock exhibits the lowest throughput
among all baselines, mainly due to synchronization at the
beginning and end of the forward and backward passes. This
causes the fastest job to wait for the slowest one, reducing
the throughput of the high-priority training job by 1.93×.

(a) ResNet50 Inference alone

(b) ResNet50 Inference + ResNet50 Training

Figure 9. Inference Memory bandwidth utilization on a ded-
icated GPU vs. collocated with training.

Figure 10. Average throughput of high priority (bold bar)
and best-effort training jobs (faint bar).

In contrast, REEF maintains high-priority job throughput
within 8% of ideal. However, Figure 10 shows that REEF heav-
ily throttles best-effort kernels, as few best-effort training
iterations complete. Orion achieves the best of both worlds.
It maintains high-priority job throughput within 16% of ideal,
while achieving up to 1.6× higher throughput compared to
dedicating the GPU to the high-priority job. By collocat-
ing the best-effort job during low-utilization periods of the
high-priority job, Orion effectively increases overall GPU
utilization. For example, when collocating a high-priority
job training BERT with a best-effort job training MobileNet,
Orion increases average SM utilization, compute utilization,
and memory bandwidth utilization by 1.4×, 1.34×, and 1.7×,
respectively.

By making progress on best-effort training jobs while serv-
ing a high-priority training job, Orion reduces the total time
to complete a set of training jobs (i.e., job makespan). We
compare the cost of training all examined models on a single
GPU with Orion versus executing training jobs sequentially

1085

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

Figure 11. Inference-inference (Apollo): p99 latency of high-
priority model (on x-axis) averaged across collocation exper-
iments with all other models.

on a dedicated GPU. We run ResNet50, ResNet101, and BERT
as high-priority training jobs and MobileNet-V2 and Trans-
former as best-effort jobs. Orion reduces the job makespan
by 1.29×, leading to 1.29× cost savings as the GPU is required
for less time to complete the jobs. In comparison, the MPS
baseline achieves only 1.14× cost savings compared to se-
quential execution, and at the expense of 1.25× higher job
completion time for high-priority jobs compared to Orion.
Compared to REEF, Orion reduces JCT and cost by 1.29×.

6.2.3 Inference-Inference. Figure 11 shows the p99 in-
ference latency when collocating a high-priority vision infer-
ence job with a best-effort inference job. The model on the
x-axis is the high-priority model, which receives inference
requests based on the Apollo trace. The best-effort inference
job receives requests with uniform inter-arrival distribution.
Figure 12 shows a similar experiment, but assuming Poisson
arrivals for both jobs. In our inf-inf experiments, all base-
lines achieve similar aggregate throughput (not shown in
the plots), but the tail latency of the high-priority inference
job differs greatly across baselines.
GPU Streams and MPS incur high p99 latency overhead:

on average 1.89× higher than the ideal p99 latency and with
high variance across model collocations. Since REEF does not
take into account the compute versus memory intensity of
the kernels it schedules, its p99 latency for the high-priority
job is 1.86× and 1.25× higher than the ideal case, for the
Apollo and Poisson experiments, respectively.

In contrast, Orion keeps the high-priority inference p99 la-
tency within 22% and 15% of the ideal latency for the Apollo
and Poisson experiments, respectively, while increasing ag-
gregate inference throughput by up to 2× (for Apollo) and
7.3× (for Poisson) compared to dedicating the GPU to the
high-priority job only. Overall, Orion provides cost savings
of 2× for 2-client inf-inf use cases compared to the dedicated
GPU case, since Orion serves the models on a single GPU
instead of one for each job.

Figure 12. Inference-Inference (Poisson): p99 latency of
high-priority model (on x-axis) averaged across collocation
experiments with all other models.

6.3 Generalizing to other GPUs and more clients
As GPU hardware resource capacity continues to scale with
each new generation [11], more tenants can be collocated. To
show that Orion can scale to multiple clients and generalize
to other GPU architectures, we evaluate Orion with 5 infer-
ence clients sharing a A100-40GB GPU. Figure 13 plots p99
latency of the high-priority inference job (labeled on x-axis)
collocated with 4 best-effort inference jobs serving the other
models in Table 3, all with Poisson request arrivals. We show
standard deviation across three runs of the same experiment.
We compare MPS and REEF with Orion. We omit temporal
sharing and Streams baselines due to their poor performance
(tail latency is 3 orders of magnitude higher than ideal).

MPS leads to 2.2× higher p99 latency than ideal. Although
employing REEF’s fine-grained scheduling policy helps re-
duce tail latency, it is still 21% higher than ideal. In contrast,
Orion’s interference-aware policy and control mechanisms
keep the p99 latency of all workloads within 9% of ideal,
showcasing Orion’s ability to generalize across GPU genera-
tions and scale to multiple clients.

6.4 Performance analysis breakdown
In Figure 14, we analyze which aspects of Orion’s policy
contribute most to performance benefits. We show results
for the inf-train use case with Poisson inference arrivals.
Our conclusions apply to the other use cases as well. We
start by simply assigning each client to a different CUDA
stream, each with the default priority. The GPU Streams
bar in Figure 14 shows this approach has high latency. The
Stream Priorities baseline shows that using the highest
CUDA priority for the stream of the high-priority inference
job helps reduce the p95 latency by up to 25%. Adding the
first component of Orion’s policy, which schedules best-
effort job kernels based on their compute-memory resource
profiles, reduces the p95 latency by an additional 48%. Finally,
taking into account the sizes (number of SMs) of the kernels
reduces the latency by up to 54% on top of the Compute/Mem

1086

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

Figure 13. p99 latency of high-priority inference job when
collocated with 4 best-effort inference jobs on A100 GPU.

profiles baseline. Hence, compute/memory-aware and size-
aware scheduling are roughly equally important. We then
check whether stream priorities are essential to the Orion
system after applying compute/memory profiles and kernel
size-based scheduling. The stream priority mechanism has
only marginal improvements at this point, hence Orion can
also be used in settings where the GPU hardware does not
support stream priorities (e.g., in MPS mode [46]).

We also tune DUR_THRESHOLD. We find that Orion has sta-
ble performance for DUR_THRESHOLD values below 3%. Lin-
ear increases in DUR_THRESHOLD beyond 3% lead to approxi-
mately linear decrease in high-priority job performance, due
to less throttling of best-effort kernels. For example, when
collocating ResNet101 inference with best-effort training, in-
ference latency is 23ms, 26ms, and 30ms for DUR_THRESHOLD
values of 10%, 15%, and 20%, respectively, while best-effort
training throughput is 8.7, 9.26, and 9.75 iterations/sec. Users
can tune DUR_THRESHOLD based on high-priority job service
level objectives. We use 2.5% in our experiments.

6.5 Overheads
Kernel launch interception. We measure the execution
time of each inference and training job on a dedicated GPU
using Orion’s kernel interception mechanism to directly
schedule kernels. Compared to native PyTorch, Orion’s over-
head remains less than 1% across all jobs.

Kernel resource profiling.We use the Nsight Systems
(NSYS) and Nsight Compute (NCU) tools from NVIDIA
to profile the first 10 mini-batches of a training job or 10
requests of an inference job. The Nsys tool adds up to 5%
overhead in the iteration time. The NCU tool performs a much
more detailed resource analysis for each kernel (e.g. cache
misses, warp scheduler statistics), and the profiling time is
proportional to the number of kernels. In our experiments, it
takes ∼2-5 seconds per kernel. Since profiling is offline, the
tools do not affect the actual job execution.

Figure 14. Orion performance analysis breakdown for inf-
train, showing which aspects benefit tail latency the most.

7 Discussion
Clustermanager co-design.Orion is currently implemented
as a per-GPU scheduler. In the future, we plan to explore
co-design with cluster management. By using each job’s
compute and memory intensity kernel profiles, the cluster
manager can place jobs with complementary resource pro-
files on the same GPU(s) to maximize resource utilization
and mitigate interference.

Software/hardware co-design. Optimizing GPU utiliza-
tion and performance is challenging with the limited inter-
face that GPU hardware currently exposes to host software.
We draw inspiration from the OpenSSD [59] platform, which
enables research in Flash storage device controller hardware
and host software co-design by exposing a lower-level inter-
face to software. Similar to how software/hardware co-design
can minimize interference on shared SSDs [31, 63, 64, 69],
enabling software/hardware co-design for GPU scheduling
(e.g., controlling the placement of GPU kernels across SMs)
can allow applications to tune end-to-end performance on
shared GPUs. This is particularly important as recent trends
in GPU programming increasingly offload more and more
scheduling to GPU hardware. For instance, CUDA graphs [6]
schedule entire graphs of kernels in the GPU with a single
CUDA API call to reduce CPU launching overhead. In this
context, Orion’s scheduling policy could be implemented ei-
ther at the GPU driver or GPU scheduler level, to interleave
kernels from multiple graphs while minimizing interference.

GPU cache interference.We currently do not consider
GPU cache interference. NVIDIA tools provide cache miss
statistics [26], which can be used to infer more specific pro-
files of kernels and model interference more accurately.

Security.We assume the clients sharing a GPU are in the
same trust domain, which is a reasonable assumption in DNN
clusters operated by the same organization [98, 99]. Hence,
Orion minimizes performance interference, but does not
guarantee secure isolation between untrusted clients sharing
a GPU. Trusted execution environments for heterogeneous
hardware are an active area of research [93].

1087

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

Applicability to Large Language Models (LLMs). We
plan to further investigate Orion’s applicability to Large Lan-
guage Models [38, 90]. Previous works [55, 60] have shown
that the token generation phase of LLM inference, which
happens sequentially, token after token, is memory-bound,
while underutilizing GPU’s compute throughput and SMs.
Thus, we can employ Orion’s resource-aware scheduling
policy to colocate LLM inference with computationally in-
tensive workloads. However, the large size of LLMs [38], as
well as the Key-Value cache, used to speedup token gener-
ation [81], significantly inflate the memory requirements
of LLM inference. Therefore, when colocating with other
workloads, additional memory swapping mechanisms must
be employed. As outlined in section 5.1.3, we plan to en-
hance Orion with existing DNN swapping mechanisms. One
such mechanism is PagedAttention [60] which offers dy-
namic allocation and swapping for LLM inference and can
be seamlessly integrated with Orion.

8 Conclusion
Orion is a GPU scheduler that transparently schedules tasks
from multiple clients sharing a GPU at the granularity of
individual operators. By considering the size, compute, and
memory profiles of each operator, Orion reduces interference
to maintain high performance for a high-priority workload
while saving up to 1.49× in cost by making progress on
collocated best-effort jobs (compared to dedicating GPUs to
individual jobs). Unlike other GPU sharing techniques, Orion
schedules at the granularity of individual GPU kernels, en-
abling it to leverage spare GPU resources available for short
time periods (e.g., 10s to 1000s of 𝜇s) during DNN job exe-
cution. This approach significantly reduces tail latency for
high-priority jobs compared to prior GPU sharing systems.

Acknowledgement
We thank our anonymous reviewers and our shepherd, Youngjin
Kwon, for their valuable feedback. We thank Benoit Steiner,
Amar Phanishayee, Bowen Wu, and Maximilian Böther for
their helpful insights at various stages of the project. Foteini
Strati is supported by the Swiss National Science Foundation
(Project Number 200021_204620).

References
[1] 2012. How to Overlap Data Transfers in CUDA C/C++. https://

developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/.
[2] 2013. GPU Performance Optimization: Programming Guide-

lines and GPU Architecture Reasons Behind Them. https:
//on-demand.gputechconf.com/gtc/2013/presentations/S3466-
Programming-Guidelines-GPU-Architecture.pdf.

[3] 2014. CUDA Streams. https://on-demand.gputechconf.com/gtc/
2014/presentations/S4158-cuda-streams-best-practices-common-
pitfalls.pdf.

[4] 2014. How the Fermi Thread Block Scheduler Works (Illustrated).
https://www.cs.rochester.edu/~sree/fermi-tbs/fermi-tbs.html.

[5] 2017. Unified Memory for CUDA Beginners. https://developer.nvidia.
com/blog/unified-memory-cuda-beginners/.

[6] 2019. Getting Started with CUDA Graphs. https://developer.nvidia.
com/blog/cuda-graphs/.

[7] 2019. High priority stream preemption. https://forums.developer.
nvidia.com/t/how-high-priority-stream-preemption/78183/1.

[8] 2020. Metric references and description. https://forums.developer.
nvidia.com/t/metric-references-and-description/111750.

[9] 2020. NVIDIA, Metrics references and description.
https://forums.developer.nvidia.com/t/metric-references-and-
description/111750/2.

[10] 2021. Python GlobalInterpreterLock. https://wiki.python.org/moin/
GlobalInterpreterLock.

[11] 2022. NVIDIA Hopper, Ampere GPUs Sweep Benchmarks in AI Train-
ing. https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-training-
hpc-hopper/.

[12] 2022. NVIDIA Multi-Instance GPU User Guide. https://docs.nvidia.
com/datacenter/tesla/mig-user-guide/.

[13] 2023. Cuda Programming. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/.

[14] 2023. CUDA RUNTIME API. https://docs.nvidia.com/cuda/cuda-
runtime-api/index.html.

[15] 2023. cudaStreamCreateWithPriority. https://docs.nvidia.com/
cuda/cuda-runtime-api/group__CUDART__STREAM.html#group_
_CUDART__STREAM_1ge2be9e9858849bf62ba4a8b66d1c3540.

[16] 2023. Deploy machine learning models in production environ-
ments. https://learn.microsoft.com/en-us/azure/cloud-adoption-
framework/innovate/best-practices/ml-deployment-inference.

[17] 2023. DISB: DNN Inference Serving Benchmark. https://github.com/
SJTU-IPADS/disb.

[18] 2023. Event Management. https://docs.nvidia.com/cuda/cuda-
runtime-api/group__CUDART__EVENT.html.

[19] 2023. NVIDIA cuBLAS. https://docs.nvidia.com/cuda/cublas/index.
html.

[20] 2023. NVIDIA cuDNN Documentation. https://docs.nvidia.com/
deeplearning/cudnn/developer-guide/index.html.

[21] 2023. NVIDIA Deep Learning Examples, BERT for Py-
Torch. https://github.com/NVIDIA/DeepLearningExamples/tree/
master/PyTorch/LanguageModeling/BERT.

[22] 2023. NVIDIA Deep Learning Examples for Tensor Cores. https:
//github.com/NVIDIA/DeepLearningExamples.

[23] 2023. NVIDIA Deep Learning Examples, Trasnformer-XL for Py-
Torch. https://github.com/NVIDIA/DeepLearningExamples/tree/
master/PyTorch/LanguageModeling/Transformer-XL.

[24] 2023. NVIDIA DGX GH200. https://www.nvidia.com/en-us/data-
center/dgx-gh200/.

[25] 2023. NVIDIA MPS. https://docs.nvidia.com/deploy/mps/.
[26] 2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-

compute.
[27] 2023. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-

systems.
[28] 2023. TorchVision Models. https://pytorch.org/vision/stable/models.

html.
[29] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16). 265–283.

[30] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and
F. Donelson Smith. 2017. GPU Scheduling on the NVIDIA TX2: Hid-
den Details Revealed. In 2017 IEEE Real-Time Systems Symposium
(RTSS). 104–115. https://doi.org/10.1109/RTSS.2017.00017

[31] Mijin An, In-Yeong Song, Yong-Ho Song, and Sang-Won Lee. 2022.
Avoiding Read Stalls on Flash Storage. In Proceedings of the 2022
International Conference on Management of Data (SIGMOD ’22).

1088

https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-overlap-data-transfers-cuda-cc/
https://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
https://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
https://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
https://www.cs.rochester.edu/~sree/fermi-tbs/fermi-tbs.html
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://forums.developer.nvidia.com/t/how-high-priority-stream-preemption/78183/1
https://forums.developer.nvidia.com/t/how-high-priority-stream-preemption/78183/1
https://forums.developer.nvidia.com/t/metric-references-and-description/111750
https://forums.developer.nvidia.com/t/metric-references-and-description/111750
https://forums.developer.nvidia.com/t/metric-references-and-description/111750/2
https://forums.developer.nvidia.com/t/metric-references-and-description/111750/2
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-training-hpc-hopper/
https://blogs.nvidia.com/blog/2022/11/09/mlperf-ai-training-hpc-hopper/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html##group__CUDART__STREAM_1ge2be9e9858849bf62ba4a8b66d1c3540
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html##group__CUDART__STREAM_1ge2be9e9858849bf62ba4a8b66d1c3540
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html##group__CUDART__STREAM_1ge2be9e9858849bf62ba4a8b66d1c3540
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/innovate/best-practices/ml-deployment-inference
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/innovate/best-practices/ml-deployment-inference
https://github.com/SJTU-IPADS/disb
https://github.com/SJTU-IPADS/disb
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://www.nvidia.com/en-us/data-center/dgx-gh200/
https://www.nvidia.com/en-us/data-center/dgx-gh200/
https://docs.nvidia.com/deploy/mps/
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://doi.org/10.1109/RTSS.2017.00017

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

[32] Joel André, Foteini Strati, and Ana Klimovic. 2022. Exploring
Learning Rate Scaling Rules for Distributed ML Training on Tran-
sient Resources. In Proceedings of the 3rd International Workshop
on Distributed Machine Learning (Rome, Italy) (DistributedML ’22).
Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3565010.3569067

[33] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. 2022. Varuna: Scalable, Low-Cost Training of
Massive Deep Learning Models. In Proceedings of the Seventeenth
European Conference on Computer Systems (EuroSys ’22).

[34] Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa,
and Chandramohan A. Thekkath. 2022. A case for disaggregation of
ML data processing. arXiv:2210.14826

[35] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch:
Fast Pipelined Context Switching for Deep Learning Applications.
In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 499–514. https:
//www.usenix.org/conference/osdi20/presentation/bai

[36] Baidu. 2023. Apollo. https://apollo.auto/.
[37] Abhishek Balasubramaniam and Sudeep Pasricha. 2022. Object De-

tection in Autonomous Vehicles: Status and Open Challenges. CoRR
abs/2201.07706 (2022). https://arxiv.org/abs/2201.07706

[38] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran
Associates, Inc., 1877–1901. https://proceedings.neurips.cc/paper_
files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[39] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Bay-
max: QoS Awareness and Increased Utilization for Non-Preemptive
Accelerators in Warehouse Scale Computers. In Proceedings of the
Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16).

[40] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-
naraman. 2014. Project Adam: Building an Efficient and Scalable
Deep Learning Training System. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’14).

[41] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. 2022. Serving Heterogeneous Machine
Learning Models on Multi-GPU Servers with Spatio-Temporal Shar-
ing. In 2022USENIXAnnual Technical Conference (USENIXATC 22).
USENIX Association, Carlsbad, CA, 199–216. https://www.usenix.
org/conference/atc22/presentation/choi-seungbeom

[42] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
USENIX Association, Boston, MA, 613–627. https://www.usenix.
org/conference/nsdi17/technical-sessions/presentation/crankshaw

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT.

[44] Shaoduo Gan, Jiawei Jiang, Binhang Yuan, Ce Zhang, Xiangru Lian,
Rui Wang, Jianbin Chang, Chengjun Liu, Hongmei Shi, Shengzhuo

Zhang, Xianghong Li, Tengxu Sun, Sen Yang, and Ji Liu. 2021. Bagua:
Scaling upDistributed Learningwith SystemRelaxations. Proc. VLDB
Endow. 15, 4 (2021).

[45] Guin Gilman, Samuel S. Ogden, Tian Guo, and Robert J. Walls. 2021.
Demystifying the Placement Policies of the NVIDIA GPU Thread
Block Scheduler for Concurrent Kernels. SIGMETRICS Perform. Eval.
Rev. 48, 3 (2021).

[46] Guin Gilman and Robert J. Walls. 2022. Characterizing Concurrency
Mechanisms for NVIDIA GPUs under Deep Learning Workloads.
SIGMETRICS Perform. Eval. Rev. 49, 3 (2022).

[47] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaim-
ing He. 2017. Accurate, Large Minibatch SGD: Training ImageNet in
1 Hour. CoRR abs/1706.02677 (2017).

[48] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramo-
hanA. Thekkath, and Ana Klimovic. 2022. Cachew:Machine Learning
Input Data Processing as a Service. In 2022 USENIXAnnual Technical
Conference (USENIX ATC 22). 689–706.

[49] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine
Kaufmann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving
DNNs like Clockwork: Performance Predictability from the Bottom
Up. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20).

[50] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022.
Microsecond-scale Preemption for Concurrent GPU-accelerated
DNN Inferences. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22).

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016.
Deep Residual Learning for Image Recognition. In Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’16).

[52] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke,
Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury. 2012. Deep
Neural Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups. IEEE Signal Processing
Magazine 29, 6 (2012).

[53] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu
Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. 2019. GPipe: Efficient Training of
Giant Neural Networks Using Pipeline Parallelism.

[54] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten
Hoefler. 2021. Data Movement Is All You Need: A Case Study on
Optimizing Transformers. In Proceedings of Machine Learning and
Systems.

[55] Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. 2023. S3:
Increasing GPU Utilization during Generative Inference for Higher
Throughput. arXiv:2306.06000 [cs.AR]

[56] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. 2017. On Large-Batch Training
for Deep Learning: Generalization Gap and Sharp Minima. In 5th
International Conference on Learning Representations, ICLR.

[57] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo
Mai, Paolo Costa, and Peter Pietzuch. 2019. Crossbow: Scaling Deep
Learning with Small Batch Sizes on Multi-GPU Servers. Proc. VLDB
Endow. 12, 11 (jul 2019), 1399–1412. https://doi.org/10.14778/3342263.
3342276

[58] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith, and
George Amvrosiadis. 2022. Plumber: Diagnosing and Removing
Performance Bottlenecks in Machine Learning Data Pipelines. In
Proc. of Machine Learning and Systems, Vol. 4. 33–51.

[59] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong, and Yong Ho
Song. 2020. Cosmos+ OpenSSD: Rapid Prototype for Flash Storage
Systems. ACM Trans. Storage 16, 3, Article 15 (jul 2020).

1089

https://doi.org/10.1145/3565010.3569067
https://arxiv.org/abs/2210.14826
https://www.usenix.org/conference/osdi20/presentation/bai
https://www.usenix.org/conference/osdi20/presentation/bai
https://apollo.auto/
https://arxiv.org/abs/2201.07706
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://arxiv.org/abs/2306.06000
https://doi.org/10.14778/3342263.3342276
https://doi.org/10.14778/3342263.3342276

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

[60] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Sto-
ica. 2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium
on Operating Systems Principles (Koblenz, Germany) (SOSP ’23). As-
sociation for Computing Machinery, New York, NY, USA, 611–626.
https://doi.org/10.1145/3600006.3613165

[61] Joel Lamy-Poirier. 2023. Breadth-First Pipeline Parallelism.
arXiv:2211.05953 [cs.DC]

[62] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim
Hyun, Ahnjae Shin, and Byung-Gon Chun. 2021. Refurbish Your
Training Data: Reusing Partially Augmented Samples for Faster Deep
Neural Network Training. In USENIX Annual Technical Conference
(ATC’21). 537–550.

[63] Sangjin Lee, Alberto Lerner, André Ryser, Kibin Park, Chanyoung
Jeon, Jinsub Park, Yong Ho Song, and Philippe Cudré-Mauroux. 2022.
X-SSD: A Storage System with Native Support for Database Log-
ging and Replication. In SIGMOD ’22: International Conference on
Management of Data.

[64] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and
Arvind Arvind. 2016. Application-Managed Flash. In Proceedings
of the 14th Usenix Conference on File and Storage Technologies
(FAST’16).

[65] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, andDevesh
Tiwari. 2022. MISO: Exploiting Multi-Instance GPU Capability on
Multi-Tenant GPU Clusters. In Proceedings of the 13th Symposium
on Cloud Computing (San Francisco, California) (SoCC ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 173–189.
https://doi.org/10.1145/3542929.3563510

[66] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong
Wang. 2023. Lyra: Elastic Scheduling for Deep Learning Clusters. In
Proc. of European Conference on Computer Systems (EuroSys ’23).

[67] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon,
and Myeongjae Jeon. 2021. Zico: Efficient GPU Memory Sharing
for Concurrent DNN Training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21).

[68] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. 2018.
Deep Gradient Compression: Reducing the Communication Band-
width for Distributed Training. https://openreview.net/pdf?id=
SkhQHMW0W

[69] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis.
2022. RAIL: Predictable, Low Tail Latency for NVMe Flash. ACM
Trans. Storage 18, Article 5 (2022).

[70] Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Olli Saarikivi,
Tianju Xu, Vadim Eksarevskiy, Jaliya Ekanayake, and Emad
Barsoum. 2021. Scaling Distributed Training with Adap-
tive Summation. In Proceedings of Machine Learning and
Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.), Vol. 3.
335–349. https://proceedings.mlsys.org/paper_files/paper/2021/file/
427e0e886ebf87538afdf0badb805b7f-Paper.pdf

[71] Dominic Masters and Carlo Luschi. 2018. Revisiting Small Batch
Training for Deep Neural Networks. arXiv:1804.07612 [cs.LG]

[72] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay
Chidambaram. 2021. Analyzing and Mitigating Data Stalls in DNN
Training. In VLDB 2021.

[73] Derek G. Murray, Jiri Simsa, Ana Klimovic, and Ihor Indyk. 2021.
tf.data: A Machine Learning Data Processing Framework. In VLDB
2021, Vol. 14.

[74] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Se-
shadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and
Matei Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism
for DNN Training. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP ’19).

[75] Kelvin K. W. Ng, Henri Maxime Demoulin, and Vincent Liu. 2023.
Paella: Low-Latency Model Serving with Software-Defined GPU

Scheduling. In Proceedings of the 29th Symposium on Operating
Systems Principles (Koblenz, Germany) (SOSP ’23). Association for
Computing Machinery, New York, NY, USA, 595–610. https://doi.
org/10.1145/3600006.3613163

[76] Andrew Or, Haoyu Zhang, and Michael None Freedman. 2022. Vir-
tualFlow: Decoupling Deep Learning Models from the Underlying
Hardware. In Proceedings of Machine Learning and Systems, Vol. 4.

[77] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H.
Anderson, F. Donelson Smith, Alex Berg, and Shige Wang. 2017.
An Evaluation of the NVIDIA TX1 for Supporting Real-Time
Computer-Vision Workloads. In 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 353–364. https:
//doi.org/10.1109/RTAS.2017.3

[78] Seo Jin Park, Joshua Fried, Sunghyun Kim, Mohammad Al-
izadeh, and Adam Belay. 2022. Efficient Strong Scaling Through
Burst Parallel Training. In Proceedings of Machine Learning and
Systems, D. Marculescu, Y. Chi, and C. Wu (Eds.), Vol. 4. 748–
761. https://proceedings.mlsys.org/paper_files/paper/2022/file/
b99e69074b2fa1d8c8fe0d5b60e19397-Paper.pdf

[79] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems.

[80] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, Chuan Wu, and Chuanxiong Guo. 2019. A Generic Commu-
nication Scheduler for Distributed DNN Training Acceleration. In
Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19).

[81] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin,
James Bradbury, Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shiv-
ani Agrawal, and Jeff Dean. 2022. Efficiently Scaling Transformer
Inference. arXiv:2211.05102 [cs.LG]

[82] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21).

[83] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W. Keckler. 2016. VDNN: Virtualized Deep Neural Networks
for Scalable, Memory-Efficient Neural Network Design. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture
(Taipei, Taiwan) (MICRO-49). IEEE Press, Article 18, 13 pages.

[84] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmogi-
nov, and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residu-
als and Linear Bottlenecks. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR.

[85] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos
Kalnis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref,
Dan Ports, and Peter Richtarik. 2021. Scaling Distributed Machine
Learning with In-Network Aggregation. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21).

[86] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius
Hobbhahn, and Pablo Villalobos. 2022. Compute Trends Across Three
Eras of Machine Learning. In 2022 International Joint Conference on
Neural Networks (IJCNN).

[87] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20).

1090

https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2211.05953
https://doi.org/10.1145/3542929.3563510
https://openreview.net/pdf?id=SkhQHMW0W
https://openreview.net/pdf?id=SkhQHMW0W
https://proceedings.mlsys.org/paper_files/paper/2021/file/427e0e886ebf87538afdf0badb805b7f-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/427e0e886ebf87538afdf0badb805b7f-Paper.pdf
https://arxiv.org/abs/1804.07612
https://doi.org/10.1145/3600006.3613163
https://doi.org/10.1145/3600006.3613163
https://doi.org/10.1109/RTAS.2017.3
https://doi.org/10.1109/RTAS.2017.3
https://proceedings.mlsys.org/paper_files/paper/2022/file/b99e69074b2fa1d8c8fe0d5b60e19397-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/b99e69074b2fa1d8c8fe0d5b60e19397-Paper.pdf
https://arxiv.org/abs/2211.05102

Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications EuroSys ’24, April 22–25, 2024, Athens, Greece

[88] Christopher J. Shallue, Jaehoon Lee, Joseph M. Antognini, Jascha
Sohl-Dickstein, Roy Frostig, and George E. Dahl. 2019. Measuring
the Effects of Data Parallelism on Neural Network Training. J. Mach.
Learn. Res. 20 (2019).

[89] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). 322–337.

[90] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Effi-
cient Foundation Language Models. arXiv:2302.13971 [cs.CL]

[91] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun,
Goeun Kim, and Woo-Yeon Lee. 2023. FastFlow: Accelerating
Deep Learning Model Training with Smart Offloading of Input Data
Pipeline. Proc. VLDB Endow. 16, 5 (2023).

[92] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All You Need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS’17).

[93] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Gravi-
ton: Trusted Execution Environments on GPUs. In 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 18).

[94] Guanhua Wang, Kehan Wang, Kenan Jiang, XIANGJUN LI, and
Ion Stoica. 2021. Wavelet: Efficient DNN Training with Tick-
Tock Scheduling. In Proceedings of Machine Learning and Systems,
Vol. 3. 696–710. https://proceedings.mlsys.org/paper/2021/file/
c81e728d9d4c2f636f067f89cc14862c-Paper.pdf

[95] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady
Pekhimenko. 2021. Horizontally Fused Training Array: An Effective
Hardware Utilization Squeezer for Training Novel Deep Learning
Models. In Proceedings of Machine Learning and Systems (MLSys).

[96] Yuxin Wang, Qiang Wang, Shaohuai Shi, Xin He, Zhenheng Tang,
Kaiyong Zhao, and Xiaowen Chu. 2020. Benchmarking the Perfor-
mance and Energy Efficiency of AI Accelerators for AI Training.
In 2020 20th IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGRID).

[97] Zhuang Wang, Haibin Lin, Yibo Zhu, and T. S. Eugene Ng. 2023. Hi-
Speed DNN Training with Espresso: Unleashing the Full Potential
of Gradient Compression with Near-Optimal Usage Strategies. In
Proceedings of the Eighteenth European Conference on Computer
Systems, (EuroSys ’23).

[98] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in
the Wild: Workload Analysis and Scheduling in Large-Scale Hetero-
geneous GPU Clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22).

[99] Lukasz Wesolowski, Bilge Acun, Valentin Andrei, Adnan Aziz, Gisle
Dankel, Christopher Gregg, Xiaoqiao Meng, Cyril Meurillon, De-
nis Sheahan, Lei Tian, Janet Yang, Peifeng Yu, and Kim Hazelwood.
2021. Datacenter-Scale Analysis and Optimization of GPU Machine
Learning Workloads. IEEE Micro 41 (2021).

[100] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin.
2023. Transparent GPU Sharing in Container Clouds for Deep Learn-
ing Workloads. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23).

[101] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, New-
sha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang,
Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia

Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Ben-
jamin Lee, Hsien-Hsin Lee, Bugra Akyildiz, Maximilian Balandat, Joe
Spisak, Ravi Jain, Mike Rabbat, and Kim Hazelwood. 2022. Sustain-
able AI: Environmental Implications, Challenges and Opportunities.
In Proceedings of Machine Learning and Systems, Vol. 4. 795–813.

[102] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan
Peng, Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou.
2018. Gandiva: Introspective Cluster Scheduling for Deep Learn-
ing. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18).

[103] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou,
Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dy-
namic Scaling on GPU Clusters for Deep Learning. In 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 20).

[104] Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-Grained GPU Shar-
ing Primitives for Deep Learning Applications. In Proceedings of
Machine Learning and Systems, Vol. 2. 98–111.

[105] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. 2023.
SHEPHERD: Serving DNNs in the Wild. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23).

[106] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen, Daniel Edward
Mawhirter, Bo Wu, Chao Li, and Minyi Guo. 2019. Laius: Towards
Latency Awareness and Improved Utilization of Spatial Multitasking
Accelerators in Datacenters. In Proceedings of the ACM International
Conference on Supercomputing (ICS ’19).

[107] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora,
and Xin Jin. 2020. Is Network the Bottleneck of Distributed Train-
ing?. In Proceedings of the Workshop on Network Meets AI ML
(NetAI ’20).

[108] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan,
Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei
Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha
Rastogi, Carole-Jean Wu, Christos Kozyrakis, and Parik Pol. 2022. Un-
derstanding Data Storage and Ingestion for Large-Scale Deep Recom-
mendation Model Training: Industrial Product. In Proceedings of the
49th Annual International Symposium on Computer Architecture
(ISCA ’22).

A Artifact Appendix
A.1 Abstract
The artifact consists of the source code of Orion5, bench-
marks for deployment and evaluation, scripts and instruc-
tions for characterizing the resource requirements of the
GPU kernels for variousDNNworkloads6, as well as a Docker
image containing all the prerequisites for installing and test-
ing Orion7.
The evaluation focuses on reproducing key results from

the paper, which demonstrate the key benefits of Orion’s
scheduling mechanism over the baselines. We pick 2 experi-
ments (inference-training and inference-inference). In order
to reduce the time and cost of the experiments, we evaluate
only 2 high-priority workloads (ResNet50 and MobileNetV2),
and focus only on the most competitive baselines (REEF and
MPS).
5https://github.com/eth-easl/orion
6https://github.com/eth-easl/orion/tree/main/profiling
7https://hub.docker.com/repository/docker/fotstrt/orion-ae/general

1091

https://arxiv.org/abs/2302.13971
https://proceedings.mlsys.org/paper/2021/file/c81e728d9d4c2f636f067f89cc14862c-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/c81e728d9d4c2f636f067f89cc14862c-Paper.pdf
https://github.com/eth-easl/orion
https://github.com/eth-easl/orion/tree/main/profiling
https://hub.docker.com/repository/docker/fotstrt/orion-ae/general

EuroSys ’24, April 22–25, 2024, Athens, Greece Foteini Strati, Xianzhe Ma, and Ana Klimovic

• Inference-Training (Figures 7a and 7b): A high-priority
inferenceworkload is colocatedwith a best-effort train-
ing workload.

• Inference-Inference (Figure 10): Both the high-priority
and best-effort clients run inference workloads.

A.2 Description & Requirements
A.2.1 How to access. The artifact is available in
https://github.com/eth-easl/orion/tree/main/artifact_evaluation.

The DOI for the artifact evaluation is https://zenodo.org/
records/10084464.

A.2.2 Hardware dependencies. The artifact has been tested
on a GCP VM with the following specifications:

• n1-standard-8 type (8 vCPUs, 30 GB DRAM)
• 1 V100-16GB GPU

We have set up a Google Cloud Platform (GCP) Project for
VM creation and artifact evaluation. We have created a GCP
VM image with the NVIDIA drivers installed, to allow for
faster deployment. We encourage the reviewers to create a
Google Cloud account (with an anonymous email) and reach
out to us to be added to the GCP project for conducting
experiments.

A.2.3 Software dependencies.
• Ubuntu 18.04
• CMake 3.19
• CUDA 10.2
• CUDNN 7.6.5
• NVIDIA DRIVER version 510.47
• Python >= 3.8
• PyTorch 1.12 (installed from source, fully installed in
our custom docker image)

• TorchVision 0.13
We have set up a Docker Image with all the software de-

pendencies pre-installed. We encourage reviewers to deploy
and evaluate Orion using this image, as described in our
README.

A.2.4 Benchmarks. We run the following models (infer-
ence + training scripts):

• ResNet50,MobileNet-V2, ResNet101 fromTorchvision [28].
• BERT and Transformer from the NVIDIA repo [22]

All the scripts and their dependencies are included in our
Docker Image.

A.3 Set-up
See our README for detailed instructions. The main steps
include:

1. Start a Google Cloud VM (using our custom VM image)
2. Connect to the VM
3. Start Orion container
4. Clone Orion repo and install

A.4 Evaluation workflow
A.4.1 Major Claims. In the paper, we show Orion’s abil-
ity to maintain the performance of the high-priority job,
while colocating with best-effort jobs.

• (C1): In the case of high-priority inference jobs colo-
cated with best-effort training jobs, Orion keeps the
p95 and p99 latency of the high-priority inference job
within 12% and 14% of the ideal, respectively. This is
proven by the experiment (E1) shown in section 6 and
Figure 7.

• In the case of high-priority inference jobs colocated
with best-effort inference jobs, Orion keeps the p95
latency and p99 latency of the high-priority job within
18% and 22% of the ideal, respectively. This is proven
by the experiment (E2) shown in section 6 and Figure
11.

Furthermore, in both cases, we see that Orion maintains the
tail latency while varying the colocated workloads, while
REEF andMPS cause great variability across the experiments.

A.4.2 Experiments. Experiment (E1): [Inference-Training]
[1̃2 GPU-hours] In this experiment, the high-priority inference
job submits requests following the Poisson distribution with
requests per second as shown in table 3. The best-effort jobs are
training workloads.:

We provide the steps for E1 in our README.

Experiment (E2): [Inference-Inference] [8̃ GPU-hours]: In
this experiment, both jobs run inference workloads. The high-
priority jobs submit requests from the Apollo trace [36], while
the best-effort jobs follow the uniform distribution with rps as
shown in table 3.

We provide the steps for E2 in our README.

1092

https://github.com/eth-easl/orion/tree/main/artifact_evaluation
https://zenodo.org/records/10084464
https://zenodo.org/records/10084464
https://cloud.google.com/apigee/docs/hybrid/v1.5/precog-gcpaccount
https://hub.docker.com/repository/docker/fotstrt/orion-ae/general
https://github.com/eth-easl/orion/tree/main/artifact_evaluation##artifact-evaluation
https://hub.docker.com/repository/docker/fotstrt/orion-ae/general
https://github.com/eth-easl/orion/tree/main/artifact_evaluation##artifact-evaluation
https://github.com/eth-easl/orion/tree/main/artifact_evaluation#reproduce-fig-7
https://github.com/eth-easl/orion/tree/main/artifact_evaluation#reproduce-fig-10

	Abstract
	1 Introduction
	2 GPU Architecture Background
	3 Understanding DNN GPU Utilization
	3.1 Profiling the GPU utilization of DNN jobs
	3.2 Exploring GPU kernel collocation

	4 Related Work on GPU Sharing
	5 Orion
	5.1 Orion Scheduler
	5.2 Workload Profiling
	5.3 Integration in DNN framework

	6 Evaluation
	6.1 Methodology
	6.2 Performance and cost benefits
	6.3 Generalizing to other GPUs and more clients
	6.4 Performance analysis breakdown
	6.5 Overheads

	7 Discussion
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

